
CURVES AND MOTION VIA VECTOR VALUED FUNCTIONS

A. HAVENS

0. Notes on these Notes

These notes cover material spanning several lectures, focusing on curves and functions whose
outputs are viewed as position vectors. The notes also contain a few additional remarks on curves
and examples that could not be covered in class, as well as some good exercises. A separate, optional,
and more challenging set of notes has been made to illuminate the meanings of various geometric
objects associated to curves, such as vector and scalar curvature, torsion, and natural frames: see
Curvature, Natural Frames, and Acceleration for Plane and Space Curves as linked on the course
website.

1. Vector Valued Functions and Curves

1.1. Describing Curves Parametrically. One often first encounters plane curves as graphs of
continuous, single variable real-valued functions, and subsequently is introduced to implicit curves.
For example, you are probably familiar with the ‘∪’ shape of the graphs of functions y = x2n,
n = 1, 2 . . ., and you have surely encountered the unit circle as the locus of all points (x, y) ∈ R2

satisfying x2 + y2 = 1, which is likely the first implicitly defined curve to become familiar to you.
One can also take another approach: introduce a parameter, and describe each of the constituent

entries of the ordered pair (x, y) as functions of this common parameter, resulting in a parametric
description of a curve. For example, the unit circle can be described by many parameterizations,
but perhaps the simplest descriptions are

x(θ) = cos θ , y(θ) = sin θ , 0 ≤ θ ≤ 2π , or

x(t) = sin(t) , y(t) = cos(t) , t ∈ R .

Exercise 1.1. Describe the differences in these parameterizations from a geometric standpoint
(what do θ and t represent?). Then, imagine that the parameterizations describe particle motion,
and explain the differences in their motions.

One can recover curves which are graphs from a parameterization as well: simply let x(t) = t,
and y(t) = f(t), and the resulting curve, for t ∈ Dom(f) is simply the graph y = f(x). This
parameterization is of course not unique: we can replace t by any function g(t) which is monotonic,
and whose range contains Dom(f) and obtain a new parameterization. For example, if Dom(f) =
R one could also parameterize the graph of y = f(x) by x(t) = t3, y(t) = f(t3). Viewing the
parameterization as describing motion along the curve, we realize that these parameterizations are
quite different in nature, though they describe the same plane curve.

Parameterizations have greater freedom to describe curves than graphs, or even implicit func-
tions. As a testament to this, consider the cycloid: a cycloid is the shape made by following a point
on the circumference of a disk, as the disk rolls without slipping along a straight path. If the disk
has radius R and rolls along the x-axis starting at time t = 0, one can deduce that the cycloid has
parametric equations

x(t) = R(t− sin t) y(t) = R(1− cos t) 0 ≤ t .

One can express a portion of one arch by an equation giving x as a function of y, but no closed
form f exists for which y = f(x) describes the whole cycloid.
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Figure 1. A pair of moments in a disk’s motion, following one point on the cir-
cumference as it traces out a cycloid.

Exercise 1.2. Use a diagram and basic trigonometric considerations to demonstrate that the above
parameterization of the cycloid is correct. Describe a geometric reinterpretation of t (not as merely
time), and then, presuming t is time in seconds, determine the linear horizontal speed of the rolling
disk’s center. Presume that x, y and R are expressed in meters.

In three dimensions, one can describe curves in space parametrically by specifying a parameter
and three functions defined on some common domain (which may be a proper subset of the natural
domains of any of the given functions). That is, one may describe a curve C to be the locus of
points determined parametrically by the triple of equations

x(t) = f(t) , y(t) = g(t) , z(t) = h(t) , t ∈ D ⊆ R .
The curve C is connected if and only if D is a connected subset of R and all three functions are
continuous on any open subinterval of D.

We’ve already encountered a simple example: parametric equations to describe lines in R3. In
particular, if f , g, and h, are all linear functions of t, then the corresponding parametric equations
describe a line if D = R and a line segment if D = [a, b] is an interval. We already know that we
can organize this same data using a vector whose components are the three functions f , g, and h.

Exercise 1.3. : Give a geometric argument that the line segment from (x0, y0, z0) to (x1, y1, z1)
may be parameterized by

x(t) = (1− t)x0 + tx1 , y(t) = (1− t)y0 + ty1 , z(t) = (1− t)z0 + tz1 , t ∈ [0, 1] .

Give a new parameterization for a time parameter t (in seconds) that describes a particle smoothly
traveling from (x0, y0, z0) to (x1, y1, z1) and back to (x0, y0, z0) in as many seconds as the twice
length of the line segment.

1.2. Vector Valued Functions.

Definition. Given a domain D ⊂ R, a (3D) vector valued function is a vector valued map r : D →
R3, described by specifying functions f, g, h : D → R:

r(t) = f(t) ı̂ + g(t) ̂ + h(t) k̂ = 〈f(t), g(t), h(t)〉 , t ∈ D .

One can specify a vector valued function with values in R2 by omitting the third component; more
generally one can define vector valued functions with n-dimensional vector values by choosing n
functions f1, . . . , fn : D → R as the components of an n-vector r(t) = 〈f1(t), . . . , fn(t)〉. The domain
of r, D, is often denoted Dom(r). The image or range of r is the set of points in R3 (or R2, or Rn)
whose position vectors are values of r(t) for some t.

Note that the components must all be defined on a common domain. One can ask about natural
domain, as one does for single variable functions: for a given r described by component formulae,
what is the largest domain in R on which r is defined?
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Proposition. The natural domain of a vector valued function is the intersection of the natural
domains of the components.

Exercise 1.4. : Prove the above proposition.

A vector valued function is equivalent to parametric equations, but provides us a neat geometric
language to work with curves. Indeed, if the domain is connected and the component functions
have (locally) connected graphs (meaning no jumps/skips or undefined points), then the image of
a two or three dimensional vector valued function is a curve in R2 or R3 respectively.

Example. Describe and visualize the curve given parametrically by r(t) = cos(t) ı̂ + sin(t) ̂ + t k̂.

Solution: First, consider the “shadow” (projection) of this parameterization on the xy-plane.
Clearly, this is a unit circle, traversed counterclockwise. Indeed, one can easily verify that the x and
y components of r satisfy x2 + y2 = 1. Thus, the whole curve is in fact confined to this cylinder.
The z-component tells the rest of the story: as t increases, the height above the xy-plane increases
commensurately. Thus, this curve is a circular helix.

Figure 2. The circular helix parameterized by r(t) = cos(t) ı̂ + sin(t) ̂ + t k̂.

Exercise 1.5. Recall that conic sections have cartesian equations of the following form:

Ellipse:
x2

a2
+
y2

b2
= 1 , Parabola: y = ax2 , Hyperbola:

x2

a2
− y2

b2
= ±1 .

For each, give a vector valued function parameterizing the curves with a domain of R.

Exercise 1.6. Give Cartesian equations for the following plane curves:

(a.) The curve which is the image of the vector valued function r(t) = t2̂ı + t4̂, t ∈ R.
(b.) The trajectory of a particle whose position after t seconds is r(t) = 〈sin3(πt), 1− sin2(πt)〉,

0 ≤ t ≤ 1.
(c.) The “witch of Agnesi,” a curve named for Maria Agnesi, author of the first three-term

calculus text, given by the vector valued function r(t) = 2a cot(θ)̂ı + 2a sin2(θ)̂, t ∈ [0, 2π],
where a is a positive real constant.
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Figure 3. The Witch of Agnesi, “witch” being a mistranslation of the Italian word
versiera (perhaps for the ’versine’ function 1− cos t.)

Whereas in the plane, a single equation involving both variables may implicitly specify a curve
(such as a conic section), curves in 3-space often arise as the intersection of a pair of surfaces.
Indeed, conic sections are realized as intersections of a double cone with a plane, hence their name.
But non-planar curves arise, e.g. as the intersection loci of cylinders or other surfaces.

Example. Sketch the curve of intersection of the parabolic cylinder y = x2 and the cubic cylinder
z = x3, and parameterize this curve.

Solution: y = x2 gives a parabolic cylinder whose traces look like the familiar parabola translated
into planes of constant z, while the cubic cylinder appears as the standard cubic sketched in the
xz-plane, then translated into planes of constant y. They intersect along a path with twists upwards
through the origin, from the octant where x, z ≤ 0, y > 0 to the octant where x, y, and z are all
positive. Letting x = t, we obtain a parameterization

r(t) = t̂ı + t2̂ + t3k̂ , t ∈ R .

(a) (b)

Figure 4. Two views of the twisted cubic curve, realized as the intersection of a
cubic cylinder with a parabolic cylinder.
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Exercise 1.7. Describe the curves of intersection of the two cylinders x2 + y2 = 1 and y2 + z2 = 1
by a pair of vector valued functions, and sketch the cylinders showing these intersection curves.
Use algebra to demonstrate that these curves are ellipses.

Exercise 1.8. Give a vector valued function which parameterizes a circle with center C(1, 3,−2)

and contains the point P (2, 4, 0), in the plane perpendicular to ı̂ + ̂ + k̂ containing both C and P .

2. Calculus of Vector Valued Functions

Throughout this section, we’ll define objects component-wise, presuming three dimensional vector
valued functions unless otherwise indicated.

2.1. Limits. We will want to be able to describe limits, derivatives, and integrals of vector valued
functions. Fortunately, we can work component-wise in each case.

Definition. The limit of the vector valued function r(t) = f(t) ı̂ + g(t) ̂ + h(t) k̂ as the variable
parameter t approaches a value a, is

lim
t→a

r(t) :=

Å
lim
t→a

f(t)

ã
ı̂ +

Å
lim
t→a

g(t)

ã
̂ +

Å
lim
t→a

h(t)

ã
k̂ ,

provided each of the component limits exists.

It is an easy exercise to see that limit properties such as linearity hold in the context of limits of
vector valued functions. One can also define continuity as one might hope:

Definition. The vector valued function r : D → R is continuous at a ∈ D if and only if

lim
t→a

r(t) = r(a) .

The vector valued function r is said to be continuous on a set S ⊆ D if it is continuous at t = a
for each a ∈ S. If r is continuous on its domain D then we simply say “r is continuous.”

Proposition. A vector valued function r(t) is continuous at t = a if and only if each of its
component functions is continuous at a.

Example. Compute the limit of r(t) =
¨
tet, sin tt , 3− e

−t cos t
∂

as t → 0. What is the natural

domain of r(t)?

Solution:

lim
t→0

r(t) =

≠
lim
t→0

(tet), lim
t→0

Ä
sin t
t

ä
, lim
t→0

(3− e−t cos t)

∑
= 〈0, 1, 2〉 .

The natural domain of r(t) is R − {0}, since the x and z components are defined for all real
numbers, while the y component is undefined at 0, and otherwise defined. Observe that the function
is in fact continuous at all points of its domain, and may be modified to continuous function by
replacing the y component with its continuous analogue (which equals 1 at t = 0, and elsewhere
agrees with (sin t)/t).

Exercise 2.1. Compute the limit

lim
t→−∞

[
t2etı̂− arctan(t1/3) ̂ +

√
9t6−t4+1
2t3+7

k̂
]
.

Exercise 2.2. Find the natural domains of the following vector valued functions, then sketch the
corresponding curves in either the plane R2 or in space R3 as appropriate.

(a.) u(t) = cos
Ä

ln(1− t2)
ä̂
ı + sin

Ä
ln(1− t2)

ä̂
 + sin

Ä
ln[(1− t2)2]

ä
k̂,

(b.) t 7→ t1/3〈(t−2/3 − 1)1/2, 1〉,
(c.) r(t) = sin(t−1) ı̂ + cos(t−1) ̂ + tan−1

√
t k̂.
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2.2. Differentiation of Vector Valued Functions. Since vector valued functions give a natural
way to describe plane and space curves, we wish to be able to compute tangent lines, and understand
how the choice of parameterization describes motion. Thus we must consider differentiation of vector
valued functions with respect to the parameter. As with limits, we will obtain a definition which
allows us to compute derivatives component-wise.

Definition. The derivative of the vector valued function r(t) at t = t0 is

dr

dt

∣∣∣
t=t0

= ṙ(t0) = lim
t→t0

r(t)− r(t0)

t− t0
,

provided the limit exists. Here, the notation ṙ is an alternative to the notation r′. The dot notation
was introduced by Isaac Newton and is sometimes called Newton’s fluxion notation. In physics, it
is often reserved to denote derivative with respect to a time parameter, but we may use it generally
to mean the derivative with respect to a parameter labeled t.

Proposition. The limit limt→t0
r(t)−r(t0)
t−t0 exists if and only if each component of r is differentiable

at t = t0, in which case

ṙ(t0) = ẋ(t0)̂ı + ẏ(t0)̂ + ż(t0)k̂ .

One can then naturally consider the derivative function ṙ(t) = ẋ(t)̂ı + ẏ(t)̂ + ż(t)k̂, which also
describes a space curve. The geometric interpretation of its value at a point is as a tangent vector :
ṙ(t0) gives a vector tangent to the curve r(t) at the position r(t0), and is called the velocity vector
of the parameterized curve r(t) at time t = t0.

To see that this is so, consider first that the direction of ṙ(t0) is the limit of secant directions:
the difference quotient is formed by taking a displacement r(t) − r(t0) emanating from r(t0) and
terminating in a nearby point r(t), then scaling by 1/(t−t0). In the limit, as the direction approaches
the tangential direction of motion, the magnitude simultaneously approaches the instantaneous
speed for the parametrization. If ṙ(t) 6= 0, then we can capture information intrinsic to the curve
(and not dependent on regarding it as a particular trajectory) via a unit tangent vector

(a) (b)

Figure 5. (A): secant vectors and difference quotient vectors, with a limiting
tangent vector ṙ(t0) and tangent line (in red), illustrated for the helix r(t) =

cos(3t)̂ı + sin(3t)̂ + tk̂ with t0 = 0. (B): the tangent vector ṙ(0) (in red) and the
corresponding unit tangent vector T(0) (in purple) for this helix.

Definition. The unit tangent vector T to a curve given parametrically by r(t) = x(t)̂ı+y(t)̂+z(t)k̂
is

T(t0) =
ṙ(t0)

‖ṙ(t0)‖
;

it is well defined at t0 provided ṙ(t0) exists and is nonzero.
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If r(t) is a parameterization such that ṙ(t0) exists and is nonzero for all t, we say that r is
regular. Observe then that for a regular curve, the unit tangent vector exists and is well defined
for all t. If r(t) is parameterized so that ‖ṙ(t)‖ = 1 for all t, so that ṙ = T, we call it a unit speed
parameterization. Unit speed parameterizations have the nice property that, up to a constant, they
parameterize the curve by distance traveled along it (see the section on arc-length.)

The following theorem gives the fundamental properties of differentiation for vector valued func-
tions.

Theorem. Let u(t) and v(t) be differentiable vector valued functions of the same dimension, let
g(t) be a real valued differentiable function, and let c be a constant scalar. Then

(1)
d

dt

Ä
u(t) + v(t)

ä
= u̇(t) + v̇(t) ,

(2)
d

dt

Ä
cu(t)

ä
= cu̇(t) ,

(3)
d

dt

Ä
g(t)u(t)

ä
= ġ(t)u(t) + g(t)u̇(t) ,

(4)
d

dt

Ä
u(t) · v(t)

ä
= u̇(t) · v(t) + u(t) · v̇(t) ,

(5)
d

dt

Ä
u(t)× v(t)

ä
= u̇(t)× v(t) + u(t)× v̇(t) ,

(6)
d

dt

(
u
Ä
g(t)
ä)

= ġ(t)u̇
Ä
f(t)
ä
.

Exercise 2.3. Prove the above theorem.

Example. Suppose r(t) is a twice differentiable vector valued function such that there is a constant
c with ‖ṙ(t)‖ = c for all t ∈ Dom(r). Then the first and second derivatives of r are always orthogonal:
ṙ(t) · r̈(t) = 0 for all t ∈ Dom(r).

Indeed, by property (4) in the theorem above, d
dt

Ä
ṙ(t) · ṙ(t)

ä
= r̈(t) · ṙ(t) + ṙ(t) · r̈(t) = 2ṙ(t) · r̈(t).

But ṙ(t) · ṙ(t) = c2 for all t, and d
dt(c

2) = 0. Thus, ṙ(t) · r̈(t) = 0 for all t ∈ Dom(r), and so
ṙ(t) ⊥ r̈(t). Geometrically, one sees that the constant speed condition implies that the velocity
curve ṙ(t) lies on a sphere of radius c, and the second derivative r̈ describes the bending of this
curve, which is necessarily tangent to the sphere. But then, since ṙ(t) is a position vector on the
sphere, its tangential direction r̈(t) is perpendicular to it, as tangents to spheres are perpendicular
to radii.

Proposition. If r(t) is differentiable at t0 with derivative ṙ(t0), then the tangent line to the curve
parameterized by r(t), with point of tangency positioned at r(t0), may be parameterized by

`(s) = r(t0) + sṙ(t0) .

Example. Describe the curve C of intersection of quadric z = xy with the cylinder x2 + y2 = 4
parametrically, and give the equation of a tangent line to the curve at the point (

√
2,
√

2, 2).

Solution: Observe that since one of the surfaces is x2 + y2 = 4, we must have that the x and
y component functions to satisfy this equation. Such functions parameterize a radius two circle in
the plane. We may take, for simplicity, x(t) = 2 cos t and y(t) = 2 sin t. Then along the curve of

intersection, z(t) = x(t)y(t) = 4 cos t sin t = 2 sin 2t. Thus, let r(t) = 2
Ä

cos(t) ı̂+sin(t) ̂+sin(2t) k̂
ä
.

For the tangent line, we compute a value t0 of the parameter t giving us the point (
√

2,
√

2, 2)
by equating like components. This gives the equations

√
2 = cos t = sin t, 2 = sin 2t. Observe that

taking tk = π/4+2kπ (for any integer k) simultaneously satisfies the conditions; we may take k = 0
7
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giving t0 = π/4. Then we compute the tangent vector

ṙ(π/4) =
d

dt
〈2 cos t, 2 sin t, 2 sin 2t〉

∣∣∣
t=π/4

= 〈−2 sin t, 2 cos t, 4 cos 2t〉
∣∣∣
t=π/4

= 〈−
√

2,
√

2, 0〉

Thus, `(s) = 〈
√

2,
√

2, 2〉+ s〈−
√

2,
√

2, 0〉 = 〈
√

2(1− s),
√

2(1 + s), 2〉 .

Caution: I’ve observed that some students when seeking a tangent line compute the derivative
as a function of t and forget to evaluate at some value t = t0 to obtain a constant tangent vector.
This can result in students giving parametric equations for something other than a line as an answer
to a tangent line question. Be sure to do a reality check: is the answer really linear in its parameter?

Example. Compute the unit tangent T vector of the helix r(t) = 〈cos t, sin t, t〉 as a function of t.
What kind of curve does T(t) trace out on the unit sphere?

Solution: The velocity vector of the helix is ṙ(t) = 〈− sin t, cos t, 1〉, whence

T(t) =
ṙ(t)

‖ṙ(t)‖
=
〈− sin t, cos t, 1〉√
sin2 t+ cos2 t+ 1

=
1√
2
〈− sin t, cos t, 1〉 .

Observe that on the unit sphere, this traces out a circle of radius
√

2/2, given by the intersection
of the unit sphere with the plane z =

√
2/2.

Exercise 2.4. Compute the following derivatives:

(a.)
d

dt

Ä
sec t̂ı + csc t̂ + t/(

√
1− t2)k̂

ä
,

(b.)
d

dt

î
e−t

2
(cos t2ı̂− sin t3̂)

ó
,

(c.)
d

dt
[at× (vt+ b)], where a, b, and v are constant vectors,

(d.)
d

dt
[at · (ut+ b)× (vt+ c)], where a, b, c, u and v are constant vectors.

Exercise 2.5. Find symmetric equations of the tangent line to the point P (2, 8, 32) on the curve
r(t) = 〈et, e3t, e5t〉.

Example. A parametric curve r(t) can fail to be regular at a point r(t0) if ṙ(t0) = 0. Since the
speed must go to zero at such a point, no unit tangent vector can be defined there from the given
parameterization. But this does not mean one cannot exist for another parameterization. However,
if the curve itself is not smooth there, then no such parameterization exists. Consider for example,
the cusp at (0, 0) of the plane curve y2 = x3. This may be parameterized by r(t) = 〈t2, t3〉. The
velocity function for this parameterization is then ṙ(t) = 〈2t, 3t2〉, which clearly vanishes at t = 0.
A particle traversing this curve according to r(t) will slow down, stop, and change direction at the
origin, before curving upwards. Indeed

lim
t→0−

ṙ(t)

‖ṙ(t)‖
=

Æ
lim
t→0−

2t√
4t2 + 9t4

, lim
t→0−

3t2√
4t2 + 9t4

∏
= 〈−1, 0〉 ,

lim
t→0+

ṙ(t)

‖ṙ(t)‖
=

Æ
lim
t→0+

2t√
4t2 + 9t4

, lim
t→0+

3t2√
4t2 + 9t4

∏
= 〈1, 0〉 .

8



2/21/20 Multivariate Calculus: Curves Havens

Figure 6. The cusp of the curve r(t) = 〈t2, t3〉, t ∈ [−1, 1] and the limiting unit
tangent vectors at the cusp. The blue portion of the curve corresponds to negative
t, and the red to positive t.

2.3. Integration of Vector Valued Functions. We may define the Riemann integral of a vector
valued function as one might define an integral of a single variable function: first we partition the
domain of integration, and then we form an appropriate Riemann sum. While the details of such a
formal definition may be worked out below in the exercises, it should be obvious that the result is
expressible as a component-wise integral:∫ b

a
r(t) dt =

Ç∫ b

a
f(t) dt

å
ı̂ +

Ç∫ b

a
g(t) dt

å
̂ +

Ç∫ b

a
h(t) dt

å
k̂ .

We may also easily obtain a vector-valued version of the fundamental theorem of calculus:

Theorem. If R : [a, b] → R3 is a vector valued function such that Ṙ(t) = r(t) for all t ∈ (a, b),
and if r(t) is Riemann integrable over [a, b], then∫ b

a
r(t) dt = R

∣∣∣b
a

= R(b)−R(a) .

Further, for any r : [a, b] → R3 continuous except for isolated jump discontinuities, the function

R(t) =
∫ t
a r(τ) dτ furnishes such an antiderivative. In particular, such R is continuous on [a, b] and

differentiable on (a, b) with velocity function Ṙ(t) = r(t).

Exercise 2.6. This exercise outlines the scheme by which one may define vector valued integration.

(a.) Recall the definition of a partition of an interval [a, b] (if you forget, you should reference
a decent calculus textbook, where rectangular Riemann sums are first introduced). Write
down what it means to have a uniform partition with n subintervals. Recall, the norm of the
partition is the maximum length of a subinterval. What’s the norm of the uniform partition
of [a, b] into n subintervals?

(b.) Mirroring the definition of a Riemann sum of a single variable function f : [a, b] → R,
write down a definition of a Riemann sum for a vector-valued function, first without using
components. Whereas the terms of a Riemann sum for f(t) are geometrically realized by
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signed rectangle areas, what is the geometric meaning of the terms of a vector-valued
Riemann sum?

(c.) Write down a careful definition of the Riemann integral
∫ b
a r(t) dt as a limit of Riemann

sums.

Example. Compute the integral of r(t) = sin3 t̂ı + (t2 − t+ t−1 + t−2/3)̂ + e
√
t
√
t
k̂ for π/2 ≤ t ≤ π.

Solution: We have to integrate each component. For the ı̂-component, we can use the Pythagorean
identity to rewrite sin3 t as sin t − cos2 t sin t, and then use substitution for the latter term. The
̂-component can be integrated using the power rule, remembering that ln t is the antiderivative for
t−1. The final component may be treated using the substitution u =

√
t, or one can recognize that

twice the derivative of
√
t shows up in the integrand, and then undo the chain rule directly. Thus∫ π

π/2
r(t) dt =

〈∫ π

π/2
sin3 t dt,

∫ π

π/2
t2 − t+ t−1 + t−2/3 dt,

∫ π

π/2

e
√
t

√
t

dt

〉

=

Æ
− cos t+

1

3
cos3 t

∣∣∣∣π
π/2
,
t3

3
− t2

2
+ ln t+ 3t1/3

∣∣∣∣π
π/2
, 2e
√
t
∣∣∣∣π
π/2

∏
=

Æ
2

3
,
7π3

24
− 3π2

8
+
(
3− 1

3
√

2

)
3
√
π + ln 2, 2e

√
π − 2e

√
π/2

∏
.

Indefinite integrals of vector valued functions are defined analogously to indefinite integrals of
real-valued functions: If r(t) is a Riemann integrable function with R(t) an antiderivative defined
over Dom(r), then, assuming Dom(r) is connected, a general antiderivative of r(t) is∫

r(t) dt = R(t) + C ,

where C is a vector constant of integration. If the domain splits into several intervals, one may
need separate constants of integration for each piece of the domain, as in the real-valued case.

Example. Find a general antiderivative of r(t) = 〈sec2 t, 1/1(t2 + 1)〉.
Solution: ∫

r(t) dt = 〈tan t+ C1, arctan t+ C2〉 ,

provided t is confined to an interval of the form (−π/2+kπ, π/2+kπ). If we assume t ∈ R−{π/2+
kπ | k ∈ Z}, then we would need new constants across each interval of the form (−π/2+kπ, π/2+kπ)
to recover the most general possible antiderivative. Writing R(t) = 〈tan t, arctan t〉, we could express
this as ∫

r(t) dt =
¶
R(t) + Ckπ on (−π/2 + kπ, π/2 + kπ)

©
where Ckπ represents a constant dependent on the interval (and thus, on the choice of a shift factor
kπ in the domain).

2.4. Arc-length. Regarding the tangent vector as a velocity vector for motion along a parameter-
ized space curve, we may define the speed ds/dt of a parameterized curve at time t to be the length
of the velocity vector:

ds

dt
= ‖ṙ(t)‖ =

√
ṙ · ṙ .

If we write r(t) = 〈f(t), g(t), h(t)〉, then

ds

dt
=

√Å
df

dt

ã2
+

Å
dg

dt

ã2
+

Å
dh

dt

ã2
.

Henceforth the notation will be streamlined (departing from the notations emphasized in the text).
We may dispense with the labels f , g, and h for the component functions, and instead regard the

10
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coordinates x, y, and z as being given as functions of t along the curve described by r. We also
make use use Newton’s fluxion notation, using an over-dot to represent time derivatives. We can
then write the arc-length differential compactly in coordinates:

ds =
»

[ẋ(t)]2 + [ẏ(t)]2 + [ż(t)]2 dt

Integrating the arc-length differential over an interval [a, b] ⊆ Dom(r), one obtains the arc-length
of the space curve r(t) as t ranges from a to b:

s(r; [a, b]) =

∫ b

a

»
[ẋ(t)]2 + [ẏ(t)]2 + [ż(t)]2 dt

Example. Find the arc-length of the space curve r(t) = 〈et cos 2t, et sin 2t, 2et〉 for 0 ≤ t ≤ π.

Solution: First, we compute and simplify ds
dt :Å

ds

dt

ã2
= (et cos 2t− 2et sin 2t)2 + (et sin 2t+ 2et cos 2t)2 + 4e2t

= e2t cos2 2t+ 4e2t sin2 2t− 4e2t cos 2t sin 2t+ e2t sin2 2t+ 4e2t cos2 2t+ 4e2t sin 2t cos 2t+ 4e2t

= e2t(cos2 2t+ 4 sin2 2t+ sin2 2t+ 4 cos2 2t+ 4) = 9e2t ,

ds

dt
= 3et .

Thus,

s
Ä
r, [0, π]

ä
=

∫ π

0
3et dt = 3eπ − 3 .

We may assert that 0 ∈ Dom(r) (one may always reparameterize so that this is true) and define
the arc-length function:

s(t) :=

∫ t

0
ds(τ) =

∫ t

0
‖ṙ(τ)‖ dτ =

∫ t

0

»
[ẋ(τ)]2 + [ẏ(τ)]2 + [ż(τ)]2 dτ .

Often, there is no closed form for s(t), but occasionally one is lucky enough to express s in terms
of t in such a way that t can be solved for in terms of s. One can then reparameterize in terms of
arc-length.

Example. Compute an arc-length parameterization of the helix r(t) = R(cos(at)̂ı+sin(at)̂)+btk̂,
where R > 0, a and b are all nonzero constants.

Solution: Observe that ṙ(t) = Ra(− sin(at)̂ı + cos(at)̂) + bk̂, and so ds
dt = ‖ṙ(t)‖ =

√
R2a2 + b2.

Thus, ds =
√
R2a2 + b2 dt =⇒ s(t) =

√
R2a2 + b2 t. Solving for t, one may reparameterize:

r(s) = R cos

Ç
as√

R2a2 + b2

å
ı̂ +R sin

Ç
as√

R2a2 + b2

å
̂ +

bs√
R2a2 + b2

k̂ .

In particular, note that when 1 = R = a = b, we obtain the arc-length parameterization

r(s) = cos(s/
√

2)̂ı + sin(s/
√

2)̂ + (s/
√

2)k̂

of the unit counterclockwise circular helix encountered earlier.

3. Motion in the Plane and Space

Throughout this section we will concern ourselves with motion: r(t) will denote a plane or space
curve describing the position of an object at time t, in seconds. We’ll presume units of meters for
position, unless otherwise specified.

11
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3.1. Velocity and Acceleration. We define the instantaneous velocity at time t = t0 of an object
undergoing motion along r(t) to be

v(t0) = ṙ(t0) =
dr

dt
(t0) .

The acceleration is then the next derivative,

a(t0) = r̈(t0) =
dṙ

dt
(t0) =

d2r

dt2
(t0) .

Newton’s famous second law linearly relates the net force F acting on the object to its acceleration
with the mass m of the object as the constant of proportionality:

F = ma .

The study of kinematics is the study of motion, especially as can be derived from knowledge of
forces acting on the object. We will soon use our tools of calculus with vector valued functions to
study projectile motion and a general kinematic formula for motion in a uniform gravitational field.

Exercise 3.1. Find the velocity and acceleration of a particle whose position is r(t) = (t2 − t)̂ı +

(t2 − t3)̂ + (te−t + et)k̂.

Exercise 3.2. Find the velocity and acceleration of a particle which moves in the plane along the
trajectory given by the cycloid r(t) = R〈t− sin t, 1− cos t〉.

Exercise 3.3. Find the velocity and acceleration of a particle which moves with trajectory r(t) =
2 cot(t) ı̂ + 2 sin2(t) ̂

3.2. Position and The Net Change Principle. Recall the net change principle, which is just
a rephrasing of the fundamental theorem of calculus. We state it here for vector valued functions:

Proposition. Given a rate of change ṙ(t), the net change of the function r(t) over the time period
t0 ≤ t ≤ t1 is given by the definite integral of ṙ(t) over the interval [t0, t1]:

r(t1)− r(t0) =

∫ t1

t0

ṙ(t) dt .

Now suppose we are given the velocity function v(t) of a particle, and know an initial position
r0 = r(t0). We can then recover the position as a function of time using the net change principle.
Indeed, since velocity is the derivative of position, we deduce:

r(t) = r0 +

∫ t

t0

v(τ) dτ .

Exercise 3.4. Suppose a particle has velocity v(t) = 〈t cos t+sin t, cos t−t sin t, 3 cos3 t−9 sin2 t cos t〉.
Find the position function r(t) if at time t = 0, it has position r(0) = 〈1,−1, 0〉.

Exercise 3.5. Suppose the velocity v(t) of a particle traces out a circle on the unit sphere, and
suppose d

dt‖a‖ = 0. What kinds of curves are the possible trajectories of the particle?

Exercise 3.6. A person is walking a dog on a 1.5m long leash. The person walks in a straight line
at 1.4 meters per second. The dog, being both stubborn and curious about the smells along a hedge
parallel to the path the person is walking, has to be dragged along, and maintains a position such
that the leash is taut and the leash is in the tangential direction to the dogs motion. Parameterize
the dog’s walking path, and compute the velocity and acceleration as functions of time. The curve
of the dog’s path is called a tractrix or a hundkurve.

12
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3.3. Projectile Motion. For this section we will consider the motion of projectiles which are
launched with an initial velocity v0 = v(0), after which the only force acting on the projectile is
assumed to be that of a uniform gravitational field. We neglect considerations such as wind and
air resistance for simplicity (these complicate the differential equations of motion sufficiently that
we’d be reliant on numerical analysis, as the extent of the effects of wind and air resistance are
dependent on the particular shape of the projectile).

By uniform gravity, we assume that the force of gravity is constant on a given object, according
to Newton’s second law:

F = ma = −mg k̂ ,

where g = 9.80665 m/s2 is the average magnitude of acceleration due to gravity on the surface Earth.
The actual value of the magnitude of acceleration varies depending on location, in part because
earth’s mass is not uniformly distributed. We’ll generally use the approximate value g = 9.8 m/s2.

Assume the projectile has an initial position sitting at some height h above the origin, and we
are given an initial velocity v0 which makes some angle of inclination with the horizontal and has
magnitude v0 = ‖v0‖. Since gravitation is assumed constant, integrating the constant acceleration
will give us a a linear velocity:

v(t)− v0 =

∫ t

0
a dτ = at =⇒ v(t) = at+ v0 .

Let θ be the angle between the projection of v0 into the xy-plane, and the x-axis, and let ϕ be the
angle of incline, made between v0 and it’s xy-plane projection. Thus, we may express the initial
velocity as

v0 = v0
Ä

cos(θ) cos(ϕ) ı̂ + sin(θ) cos(ϕ) ̂ + sin(ϕ) k̂
ä
.

One way to simplify things is to rotate our coordinates so that the x axis is along the direction of
horizontal motion, and thus, θ = 0. Then, we can write everything with just ı̂ and k̂ components
(or ı̂ and ̂ components, if you rotate your coordinate system again, so that ̂ is the vertical direction
from the ground), or use angle brackets with just two entries.

With such a simplification, the velocity function of the projectile becomes

at+ v0 = v0 cos(ϕ) ı̂ +
Ä
v0 sin(ϕ)− gt

ä
k̂ .

We can integrate again, using r0 = hk̂ to obtain the position:

r(t)− r0 =

∫ t

0
v(τ) dτ =

∫ t

0
aτ + v0 dτ

=
1

2
at2 + v0t

=⇒ r(t) =
1

2
at2 + v0t+ r0

= v0 cos(ϕ)t ı̂ +
Ä
h+ v0 sin(ϕ)t− gt2/2

ä
k̂ .

Such a formula for r(t) is called a general kinematic equation. Using units of meters and seconds,
it can be expressed in angle brackets as

r(t) = 〈v0 cos(ϕ)t,−4.9t2 + v0 sin(ϕ)t+ h〉 .

If instead we switch from meters to feet, g becomes approximately 32ft/s2, and the equation is
instead

r(t) = 〈v0 cos(ϕ)t,−16t2 + v0 sin(ϕ)t+ h〉 .
From our general kinematic equation we observe that the motion decomposes into linear hor-

izontal motion, and quadratic vertical motion. The resulting trajectory curve is a parameterized
parabola. We can easily extract information such as the maximum height, duration of flight, and
velocity on impact using tools of algebra and/or elementary calculus.

13
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Example. A projectile is launched at 16m/s at an angle of 60.0◦ from the horizontal and a height
of 2.0 meters. Find the maximum height, the horizontal range , and total flight duration of the
projectile.

Solution: From the above considerations, we have

r(t) = 〈8t,−4.9t2 + 8
√

3t+ 2.0〉 = 8t̂ı + (−4.9t2 + 8
√

3 + 2) k̂ .

The maximum height occurs at the vertex of the parabola, which may be found algebraically if one
has memorized such a description. One can also find maximum height by determining when the
vertical velocity vanishes, and evaluating the vertical component at that time. Then

v(t) · k̂ = −9.8t+ 8
√

3 = 0 =⇒ t = 8
√

3/9.8 ≈ 1.41 ,

so the maximum height is achieved about 1.41 seconds into the flight. This gives a maximum height
of

r(1.41) · k̂ ≈ 11.8 m .

To find the flight duration, we seek positive t such that r(t) · k̂ = 0. Applying the quadratic formula
gives t ≈ 2.97 seconds. The horizontal range is then found by computing r(2.97) · ı̂ = 8(2.97) ≈ 23.7,
so the horizontal range of the projectile is approximately 23.7 m.

Exercise 3.7. Find the velocity and position functions of a projectile with initial velocity v0 =
(5.0̂ı + 10.0̂ + 15.0k̂) m/s which is launched 4.0 meters above the ground. What is its maximum
height? How long does it take to hit the ground? What is its final velocity vf as it impacts the
ground?

Exercise 3.8. Prove that ϕ = π/4 maximizes the horizontal range of a projectile, and express this
range in terms of the initial speed v0.

Exercise 3.9. Let α, β, and γ be the angles between v0 and ı̂, ̂ and k̂, respectively. Compute a
general position function like the one above in terms of the initial velocity expressed using α, β, γ,
and initial speed v0 for a projectile launched from r0 = hk̂.

Exercise 3.10. Suppose r(t) describes the motion of a particle in R3 with a constant acceleration
a, initial velocity v0, and initial position r0. Show that r(t) is a parameterized parabola, and express
the the arc-length function s(t) measuring distance traveled along the trajectory from r0 to r(t) as
an integral in terms of a and v0.

For a discussion of tangential and normal components of acceleration, and to learn about curva-
ture and torsion, and explore the vector geometry of planetary orbits, see the next batch of notes:
Curvature, Natural Frames, and Acceleration for Plane and Space Curves.

4. Hints and Answers to Some Exercises

4.1. Describing Curves Parametrically.

1.1 Consider both direction and duration. If you draw a unit circle and label a point, you should
be able to recognize the values of the parameters of the different parameterizations which
give this point as arising from considering different angles.

1.2 Consider the relationship between the distance rolled by the disk, and the angle made
between −̂ and the displacement vector from the wheel’s center to the point r(t). Draw an
appropriate right triangle to obtain the x and y components of the parameterization from
a careful diagram of the disk mid-roll. The horizontal speed of the disk’s center is R meters
per second.

14
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1.3 To get the back and forth motion, try using a trigonometric function in place of t. You need
to calibrate the period based on the length of the line segment.

4.2. Vector Valued Functions.

1.4 Consider how one decides if a given t ∈ R is in the natural domain of a component–under
what conditions on components is r defined at t?

1.5 For the hyperbola, try to see geometrically that hyperbolic trigonometric functions play a
natural role analogous to trigonometric functions. It is helpful to remember the hyperbolic
analogue of of the pythagorean identity: what relation do sinh2 t and cosh2 t share?

1.6 For b, you can reparameterize to understand how the x and y components are related by a
polynomial equation. For the witch of Agnesi, Pythagorus is your friend.

1.7 To show that they are ellipses, try writing Cartesian equations and either eliminating a
variable (such as z) or defining a new variable that relates x and z. You can also use the
classical definition of an ellipse as the loci of all points P such that the sums of the distances
|PF1| and |PF2| equals some constant 2a, for a pair of fixed points F1 and F2, called foci.

1.8 First figure out the radius R of the circle. Can you find a pair of perpendicular vectors of
length R, lying in the desired plane? (Extra hint: Use a cross product!)

4.3. Limits.

2.1 Remember that the limits at infinity of an algebraic function are determined by the highest
degree terms of the numerator and denominator. Be careful of the sign! You should get that
the limit equals 1

2(π̂− 3k̂).

2.2 Use limits to help sketch the curves. It also helps to algebraically simplify, and sometimes
to reparameterize.

4.4. Differentiation.

2.3 You can work in components, and appeal to the familiar properties of derivatives of real-
valued functions.

4.5. Integration.

2.6

Definition. Let P denote a partition a = t0 < t1 < . . . < tn = b of [a, b], with a
choice of sample points t∗i ∈ [ti−1, ti] for each subinterval, i = 1, . . . , n. The partition is
uniform if the subinterval lengths ∆ti := ti− ti−1 are all equal, in which case we can denote
this length by ∆t. The norm ‖P‖ of the partition is the maximum subinterval length:
‖P‖ := max{∆ti | i = 1 . . . n}. Observe that ∆t = (b − a)/n = ‖P‖ in the uniform case.
We define a Riemann sum of r(t) on [a, b] to be

S(r,P) =
n∑
i=1

r(t∗i )∆ti .

Choosing a sequence Pk of partitions with norms decreasing to 0 and sample points, one
defines the Riemann integral∫ b

a
r(t) dt = lim

k→∞
S(r,Pk) .

One interpretation of the terms of a vector valued Riemann sum is as a vector of rectangular
areas. A more physical-geometric interpretation is as follows: if r(t) is a velocity curve, then
r(t∗i )∆ti approximates the net displacement of the particle during the interval [ti−1, ti].
Indeed, by the mean value theorem, the average velocity is attained at some point t̄i in
that interval, and as ‖Pk‖ → 0, the sample points become closer to t̄i, and the quantity
r(t∗i ) approaches the average velocity, meaning r(t∗i )∆ti ≈ r(t̄i)∆ti is the approximate net
displacement.
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4.6. Position and the Net Change Principle.

3.5 Observe that v ⊥ a, and since ‖a‖ is constant, so is ‖v‖. It is also helpful to consider the
normal to the plane cutting out the circle, and the plane’s distance from the origin. You
should be able to show that the position function describes either a helix or a circle.
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