MATH 131, Fall 2019
Quiz 11 Solutions

1. Let

$$
f(x)=2 x^{3}-3 x^{2}-\frac{2}{\sqrt{1-x^{2}}}-2^{x} \ln 2
$$

Find a general antiderivative $F(x)$ of $f(x)$, valid wherever $f(x)$ is continuous.

Note that $f(x)$ is continuous only on the open interval $(-1,1)$, so we do not have to worry about constructing a piecewise solution with different constants for different subdomains. Then using linearity, the power rule for anti-differentiation, together with knowledge of derivatives of logarithms and inverse trigonometric functions, we obtain

$$
F(x)=\frac{1}{2} x^{4}-x^{3}+2 \arccos (x)-2^{x}+C
$$

Note that we have two choices for handling $-2 / \sqrt{1-x^{2}}$, since both $-\arcsin (x)$ and $\arccos (x)$, and any constant shifts of these, derive to $-1 / \sqrt{1-x^{2}}$.
2. A particle moves with acceleration $a(t)=\cos (t)-\sin (t)$, with initial velocity $v_{0}=v(0)=0$ and initial position $s_{0}=s(0)=-1$. Find the position function $s(t)$.

We know that velocity is the derivative of position, and acceleration is the derivative of velocity. Recall also that the derivative of $\sin x$ is $\cos x$ and the derivative of $\cos x$ is $-\sin x$. First anti-derive the acceleration to obtain velocity, and use the given initial value to determine the constant:

$$
\begin{gathered}
v(t)=\sin (t)+\cos (t)+C \\
v(0)=v_{0}=0=\sin (0)+\cos (0)+C=0+1+C \Longrightarrow C=-1
\end{gathered}
$$

Thus the velocity is $v(t)=\sin (t)+\cos (t)-1$. Anti-deriving this and using the initial position gives

$$
\begin{gathered}
s(t)=-\cos (t)+\sin (t)-t+D \\
s(0)=s_{0}=-1=-\cos (0)+\sin (0)-0+D \Longrightarrow D=0
\end{gathered}
$$

Thus the position function is $s(t)=\sin (t)-\cos (t)-t$.

