MATH 131, Fall 2019
Quiz 11 Solutions

1. Let

$$
f(x)=6 x^{5}-\frac{1}{x}+\frac{1}{x^{2}}-\frac{1}{3 \sqrt[3]{x^{2}}}+\frac{3}{1+x^{2}}
$$

Find a general antiderivative $F(x)$ of $f(x)$, valid wherever $f(x)$ is continuous.

Note that $f(x)$ is continuous for all real numbers except zero, and so in particular there are two connected intervals over which it is continuous: $(-\infty, 0)$ and $(0, \infty)$. Let I be a connected interval contained in one of these. Then using linearity, the power rule for anti-differentiation, together with knowledge of derivatives of logarithms and inverse trigonometric functions, we obtain a general antiderivative over I of the form

$$
F(x)=x^{6}-\ln |x|-\frac{1}{x}-\sqrt[3]{x}+3 \arctan (x)+C
$$

To obtain the most general antiderivative valid on $(-\infty, 0) \cup(0, \infty)$ we build a piecewise function

$$
F(x)= \begin{cases}x^{6}-\ln (x)-\frac{1}{x}-\sqrt[3]{x}+3 \arctan (x)+C_{1} & \text { if } x>0 \\ x^{6}-\ln (-x)-\frac{1}{x}-\sqrt[3]{x}+3 \arctan (x)+C_{2} & \text { if } x<0\end{cases}
$$

where the different constants allow for different vertical shifts to the left and right of the discontinuity at $x=0$.
2. Find the solution $f(x)$ of the following initial value problem: $f^{\prime \prime}(x)=e^{x}-\cos x, f^{\prime}(0)=e$, $f(0)=1$.

We anti-differentiate and apply the initial conditions given to determine the values of the constants at each stage:

$$
\begin{gathered}
f^{\prime}(x)=e^{x}-\sin x+C \text { and } f^{\prime}(0)=e=e^{0}-\sin (0)+C \Longrightarrow C=e \\
f(x)=e^{x}+\cos x+e x+D \text { and } f(0)=1=e^{0}+\cos (0)+e(0)+D \Longrightarrow D=-1
\end{gathered}
$$

so the final function solving the initial value problem is

$$
f(x)=e^{x}+\cos x+e x-1
$$

