MATH 131, Fall 2019
Quiz 10 Solutions

1. An open top box with a square base is to be made by cutting four squares away from the corners of a $4 \mathrm{ft} \times 4 \mathrm{ft}$ square piece of cardboard, and then folding up the sides. Find the maximum volume possible and the dimensions of the box achieving it.

If we cut away squares that are $x \times x$ square feet then the base of the box after folding up the sides is $4-2 x$ feet long and equally wide, and the sides of the box are x feet tall, giving a volume formula $V(x)=x(4-2 x)^{2}$ cubic feet.
We know that since the original piece of cardboard was $4 \mathrm{ft} \times 4 \mathrm{ft}$, the maximum value for x permissible is 2 feet, since this corresponds to decomposing the cardboard into four equal squares, all of which are removed, leaving a "box of volume zero" (Impractical? Yes! Impossible? No! A mathematician can imagine a 0-dimensional box...) The minimum value of x is zero feet, which corresponds to not removing any squares, not folding up the sides, and again gives a volume of zero (a completely flat box). Thus the range of permissible values for x is the closed interval $[0,2]$, and by the continuity of $V(x)$ and the closed interval method, it suffices to compare values of the boundary cases $V(0)=0=V(2)$ to any critical values for critical numbers within the interval.
The critical numbers come from finding where the derivative of V with respect to x is 0 . By the product and chain rules:

$$
V^{\prime}(x)=(4-2 x)^{2}-4 x(4-2 x)=(4-2 x-4 x)(4-2 x)=4(2-3 x)(2-x)
$$

and so the only critical numbers are those for which $V^{\prime}(x)=0$, which occurs if either $x=2$ feet or $x=2 / 3$ feet. Only $x=2 / 3$ gives a nonzero volume, and this must yield a maximum. Thus the maximum possible volume is

$$
V(2 / 3)=\frac{128}{27} \mathrm{ft}^{3}
$$

which is obtained with dimensions $8 / 3 \mathrm{ft} \times 8 / 3 \mathrm{ft} \times 2 / 3 \mathrm{ft}$.

