MATH 131, Fall 2019
Quiz 9 Solutions

1. Let $f(x)=\frac{x}{x^{2}+1}$.
(a) Find the intervals on which $f$ is increasing, and the intervals on which $f$ is decreasing.

$$
f^{\prime}(x)=\frac{(1)\left(x^{2}+1\right)-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}} .
$$

Since $\left(1+x^{2}\right)^{2} \geq 1$ for all real $x, f^{\prime}(x)>0 \Longleftrightarrow 1-x^{2} \geq 0 \Longleftrightarrow 1 \geq x^{2} \Longleftrightarrow-1 \leq x \leq 1$. Observe that the critical numbers are $x= \pm 1$, and $f^{\prime}(x)>0$ on the interval $(-1,1)$ thus $f$ is increasing on the interval $(-1,1)$. $f$ is decreasing whenever $f^{\prime}(x)<0$, which occurs whenever $x^{2}>1$, or equivalently, for all $x$ of absolute value larger than 1 , and thus $f$ is decreasing whenever $x$ is in $(-\infty,-1) \cup(1, \infty)$.
(b) Find the intervals of concavity and any inflection points of $f$.

$$
f^{\prime \prime}(x)=\frac{(-2 x)\left(1+x^{2}\right)^{2}-2\left(1-x^{2}\right)\left(1+x^{2}\right)(2 x)}{\left(1+x^{2}\right)^{4}}=\frac{2 x^{3}-6 x}{\left(1+x^{2}\right)^{3}} .
$$

The sign of $f^{\prime \prime}(x)$ is determined solely by the sign of its numerator $2 x^{3}-6 x=2 x\left(x^{2}-3\right)=$ $2 x(x-\sqrt{3})(x+\sqrt{3})$. If $x<-\sqrt{3}$, all three factors are negative, so $f^{\prime \prime}(x)$ is negative, while if $-\sqrt{3}<x<0$ then the factor $x+\sqrt{3}$ becomes positive while the others remain negative, and so $f^{\prime \prime}(x)$ becomes positive. If $0<x<\sqrt{3}$ then only the factor of $x-\sqrt{3}$ is negative, and the resulting product gives us a negative sign for $f^{\prime \prime}(x)$. Finally, if $x>\sqrt{3}$ all factors are positive and $f^{\prime \prime}(x)$ is also positive. Thus, by the concavity test $f$ is concave down on $(-\infty,-\sqrt{3}) \cup(0 \sqrt{3})$ and concave up on $(-\sqrt{3}, 0) \cup(\sqrt{3}, \infty)$. Since the concavity changes at $x=-\sqrt{3}, x=0$ and $x=\sqrt{3}$, there are points of inflection at $(-\sqrt{3},-\sqrt{3} / 4),(0,0)$, and $9 \sqrt{3}, \sqrt{3} / 4)$.
(c) Find and classify all local extrema using either the first or second derivative tests.

Since the derivative is defined for all real $x$, it suffices to check and classify the critical values associated to the two critical numbers $x=-1$ and $x=1$. By the first derivative test, since $f^{\prime}(x)$ changes sign from negative to positive as $x$ crosses -1 , we deduce that $(-1, f(-1))=(-1,-1 / 2)$ is a local minimum. On the other hand, as $x$ crosses 1 the sign of $f^{\prime}$ changes from positive to negative, whence $(1, f(1))=(1,1 / 2)$ is a local maximum. If
one prefers the second derivative test, it suffices to use that $f$ is concave up when $x=-1$ to deduce that $(-1,-1 / 2)$ is a local minimum and that $f$ is concave down when $x=1$ to deduce that $(1,1 / 2)$ is a local maximum.
(d) Determine any asymptotes of $f$.

Note that $f(x)$ is defined for all real numbers and thus there are no finite values $a$ such that $\lim _{x \rightarrow a} f(x), \lim _{x \rightarrow a^{-}} f(x)$, or $\lim _{x \rightarrow a^{+}} f(x)$ are infinite. Thus $f$ has no vertical asymptotes. However, $f$ does have a horizontal asymptote:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{x}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{1}{x+1 / x}=0 \\
\lim _{x \rightarrow-\infty} \frac{x}{x^{2}+1}=\lim _{x \rightarrow-\infty} \frac{1}{x+1 / x}=0
\end{gathered}
$$

whence $y=0$ is a horizontal asymptote of $y=f(x)$.
(e) Use the information gathered in (a)-(d) to sketch a graph of $f$.

See figure 1.


Figure 1: The graph of $y=\frac{x}{x^{2}+1}$.
2. Let $g(x)=x^{2}-3 x^{2 / 3}$.
(a) Find the intervals on which $g$ is increasing, and the intervals on which $g$ is decreasing.

$$
g^{\prime}(x)=2 x-2 x^{-1 / 3}=\frac{2}{\sqrt[3]{x}}\left(x^{4 / 3}-1\right)
$$

Observe that the critical numbers are $x= \pm 1$ and $x=0$, since $( \pm 1)^{4 / 3}-1=0$ and there are no other real roots of $x^{4 / 3}-1$, while $\frac{2}{\sqrt[3]{x}} \neq 0$ for all nonzero $x$ but fails to exist at $x=0$.Note also that the numerator is positive for $x$ between -1 and 1 , and negative otherwise, while the denominator has the same sign as $x$ itself, whence the function $g$ is increasing when $x$ is in $(-1,0) \cap(1, \infty)$ and decreasing when $x$ is in $(-\infty,-1) \cap(0,1)$.
(b) Find the intervals of concavity and any inflection points of $g$.

$$
g^{\prime \prime}(x)=2+\frac{2}{3} x^{-4 / 3}>0 \text { for all } x \neq 0
$$

Thus the function $g(x)$ is concave up on $\mathbb{R}-\{0\}=(-\infty, 0) \cup(0, \infty)$.
(c) Find and classify all local extrema using either the first or second derivative tests.

By the second derivative test, since $g^{\prime \prime}( \pm 1)=\frac{8}{3}>0$, the critical points $(-1,-2)$ and $(1,-2)$ are both local minima. The second derivative fails to exist at $x=0$, as does the first derivative, however $g(0)$ is defined and equal to 0 , and we note that the first derivative goes from positive to negative across $x=0$, and thus by the first derivative test $g(x)$ has a local maximum at $(0,0)$. Further, by considering limits $\lim _{x \rightarrow 0^{-}} g(x)$ and $\lim _{x \rightarrow 0^{+}} g(x)$, one can show that there is a vertical tangent line to $g(x)$ at $(0,0)$, whence this is a cusp local maximum .
(d) Determine any asymptotes of $g$.

The function $g(x)$ is continuous for all real numbers and has no vertical asymptotes. Observe that $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} x^{2 / 3}\left(x^{4 / 3}-3\right)=\infty$, and similarly $\lim _{x \rightarrow-\infty} g(x)=\infty$ whence there are no horizontal asymptotes.
(e) Use the information gathered in (a)-(d) to sketch a graph of $g$.

See figure 2.


Figure 2: The graph of $y=x^{2}-3 x^{2 / 3}$.

