MATH 131, Fall 2019
Quiz 9 Solutions

1. Let $f(x)=e^{-x^{2}}$.
(a) Find the intervals on which f is increasing, and the intervals on which f is decreasing.

$$
f^{\prime}(x)=-2 x e^{-x^{2}}
$$

Observe that $f^{\prime}(x)$ changes sign precisely once, at $x=0$ which is the unique critical number. For $x<0, f^{\prime}(x)>0$, and for $x>0, f^{\prime}(x)<0$ and so $f(x)$ is increasing on $(-\infty, 0)$ and decreasing on $(0, \infty)$.
(b) Find the intervals of concavity and any inflection points of f.

$$
f^{\prime \prime}(x)=\left(4 x^{2}-2\right) e^{-x^{2}}=2\left(2 x^{2}-1\right) e^{-x^{2}}
$$

The sign of $f^{\prime \prime}(x)$ is determined by the sign of the quadratic $2 x^{2}-1$, which is positive on $(-\infty,-\sqrt{2} / 2) \cup(\sqrt{2} / 2, \infty)$ and negative on $(-\sqrt{2} / 2, \sqrt{2} / 2)$. Thus $f(x)$ is concave up on $(-\infty,-\sqrt{2} / 2) \cup(\sqrt{2} / 2, \infty)$ and concave down on $(-\sqrt{2} / 2, \sqrt{2} / 2)$, and the points of inflection are $(-\sqrt{2} / 2,1 / \sqrt{e})$ and $(\sqrt{2} / 2,1 / \sqrt{e})$.
(c) Find and classify all local extrema using either the first or second derivative tests.

At the unique critical number $x=0$ the derivative is changing from positive to negative, whence $(0,1)$ is a local maximum.
(d) Determine any asymptotes of f.

Note that $f(x)$ is continuous for all real x and thus there are no vertical asymptotes. However,

$$
\lim _{x \rightarrow-\infty} e^{-x^{2}}=0 \lim _{x \rightarrow \infty} e^{-x^{2}}=0
$$

whence $y=0$ is a horizontal asymptote of $y=e^{-x^{2}}$.
(e) Use the information gathered in (a)-(d) to sketch a graph of f.

See figure 1.

Figure 1: The graph of $y=e^{-x^{2}}$.

