MATH 131, Fall 2019
Quiz 8 Solutions

1. Show that for any real numbers a and b,

$$
|\sin (2 b)-\sin (2 a)| \leq 2|b-a| .
$$

Let a and b be distinct real numbers. The trigonometric function $\sin x$ is continuous and differentiable for all real numbers x, and thus it is continuous on the closed interval with endpoints a and b, and differentiable on the open interval with endpoints a and b, with derivative $\frac{\mathrm{d}}{\mathrm{d} x} \sin (2 x)=2 \cos (2 x)$. Thus by the mean value theorem, there is a number c between a and b such that ${ }^{1}$

$$
\sin (2 b)-\sin (2 a)=2 \cos (2 c)(b-a)
$$

Since $0 \leq|\cos (2 c)| \leq 1$ for any real c, we can take absolute values on both sides of our equation to conclude:

$$
|\sin (2 b)-\sin (2 a)|=|2 \cos (2 c)||b-a| \leq 2|b-a| .
$$

Of course, if $a=b$ we cannot apply the MVT as the interval between a and b consists of a single point $x=a=b$. In this case however, both sides of the desired inequality must yield 0 , and so the inequality is still true when $a=b$. Thus, for any real numbers a and b, we conclude $|\sin (2 b)-\sin (2 a)| \leq 2|b-a|$, as was to be shown.

[^0]
[^0]: ${ }^{1}$ Note that although in the MVT hypotheses one assumes $a<b$, it does not matter if instead $b<a$: switching the labels a and b and then multiplying the equation $f(a)-f(b)=f^{\prime}(c)(a-b)$ by -1 on both sides recovers the MVT conclusion $f(b)-f(a)=f^{\prime}(c)(b-a)$ in its original symbolic form.

