Quiz 8
\qquad

For full credit you must present a clearly organized solution, showing all supporting calculations. This quiz has two sides.

1. Show that for any real numbers a and b,

$$
|\cos b-\cos a| \leq|b-a| .
$$

2. Show that $f(x)=3 x-e^{\cos x}$ has a unique real root.
3. Show that for all $x \geq 1$ the functions $f(x)=2 \cot ^{-1}\left(\frac{1}{\sqrt{x}}\right)$ and $g(x)=\cos ^{-1}\left(\frac{2 \sqrt{x}}{1+x}\right)$ differ by a constant, and determine the value of that constant.
4. A point $x=a$ is called a fixed point ${ }^{1}$ of a function $f(x)$ if $f(a)=a$. Show that if $f^{\prime}(x) \neq 1$ for all x then f has at most one fixed point.
[^0]
[^0]: ${ }^{1}$ The terminology "fixed point" is evocative if one considers the effect of iterating the map $x \mapsto f(x)$: if f is a map from a domain $D \subseteq \mathbb{R}$ with range contained in D, then consider for any number c in the domain D of f the sequence $\mathcal{O}(f, c):=\left\{c, \bar{f}(c), f(f(c)), f(f(f(c))), \ldots, f^{n}(c), \ldots\right\}$, called the orbit of c under the map $x \mapsto f(x)$. Then a fixed point $x=a$ is one for which this sequence is constant: repeated applications of f leave a fixed, and a has constant orbit' under f.

