
MATH 131, Fall 2019
Quiz 8 Solutions

his quiz has two sides.

1. Show that for any real numbers a and b,

| cos b− cos a| ≤ |b− a| .

Let a and b be distinct real numbers. The trigonometric function cosx is continuous and
differentiable for all real numbers x, and thus it is continuous on the closed interval with
endpoints a and b, and differentiable on the open interval with endpoints a and b, with
derivative d

dx cos(x) = − sin(x). Thus by the mean value theorem, there is a number c
between a and b such that1

cos(b)− cos(a) = − sin(c)(b− a) .

Since 0 ≤ | sin(c)| ≤ 1 for any real c, we can take absolute values on both sides of our
equation to conclude:

| cos(b)− cos(a)| = | − sin(c)||b− a| ≤ |b− a| .

Of course, if a = b we cannot apply the MVT as the interval between a and b consists of a
single point x = a = b. In this case however, both sides of the desired inequality must yield
0, and so the inequality is still true when a = b. Thus, for any real numbers a and b, we
conclude | cos b− cos a| ≤ |b− a|, as was to be shown.

1Note that although in the MVT hypotheses one assumes a < b, it does not matter if instead b < a: switching
the labels a and b and then multiplying the equation f(a)− f(b) = f ′(c)(a− b) by −1 on both sides recovers the
MVT conclusion f(b)− f(a) = f ′(c)(b− a) in its original symbolic form.



2. Show that f(x) = 3x− ecosx has a unique real root.

Note that f(x) is continuous and differentiable for all real numbers, as it consists of a differ-
ence of a linear function with a composition of a trigonometric function with an exponential
function, each class of which is continuous and differentiable on their domains (in this case
all share the domain of the entire real line R, and differences of continuous and differentiable
functions remain continuous and differentiable. In particular, f is continuous on any closed
interval, and also differentiable on any open interval.
Observe that f(0) = −e < 0, and f(π/2) = 3π/2 − e0 = 3π/2 − 1 > 0. By continuity and
the intermediate value theorem, since f(0) = −e < 0 < 3π/2 − 1 = f(π/2), we conclude
that there is a real number r, 0 < r < π/2 such that f(r) = 0, and thus f has a real root.
Now, suppose f has more than one distinct real root. Let a and b be two such roots. Note
that distinct means precisely that a 6= b, but we may assume without loss of generality that
a < b. We know that f is continuous on the interval [a, b], and differentiable on the interval
(a, b). Now, since a and b are both roots, f(a) = 0 = f(b), and so under the assumption of
a < b being distinct roots of f , there is an interval [a, b] over which f meets the hypotheses
of Rolle’s theorem, and one concludes that between these roots there must be a number c
with f ′(c) = 0.
However, upon differentiation of f , we have

f ′(x) = 3 + sin(x)ecosx .

Since 0 ≤ | sinx| ≤ 1 and 0 ≤ | cosx| ≤ 1, we know that | sin(x)ecosx| ≤ |1|e1 = e. Since
3 > e, we conclude

f ′(x) > 0 for all x in R .

Indeed, the smallest possible value of f ′(x) is

f ′(3π/2) = 3− e > 0 .

This contradicts the existence of a c such that f ′(c) = 0. Thus the assumption of at least two
distinct roots is untenable, and we conclude that the root r guaranteed by the intermediate
value theorem is in fact the unique real root of this function.
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First, we compute the derivatives of these functions, using the assumption that x > 1 as
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Since f ′(x) = g′(x) for x > 1, we conclude that the functions differ by a constant, i.e., that
there is some value C such that f(x) = g(x) + C. To find C, we evaluate the two functions
at a value, such as x = 1:

f(1) = 2 cot−1(1/1) =
π

2
, g(1) = cos−1(2/2) = 0 ,

thus taking C = π/2, we have that

2 cot−1
Ç

1√
x

å
= cos−1

Ç
2
√
x

1 + x

å
+
π

2
.



4. A point x = a is called a fixed point2 of a function f(x) if f(a) = a. Show that if f ′(x) 6= 1
for all x then f has at most one fixed point.

Define a new function g(x) = f(x) − x. Note that a zero x = a of g(x) corresponds to a
fixed point of f(x): 0 = g(a) ⇐⇒ 0 = f(a) − a ⇐⇒ f(a) = a. Now, suppose that
f(x) has two distinct fixed points, a and b, and without loss of generality, suppose a < b.
Then assuming f ′(x) exists for all real numbers, we know that f(x) is continuous for all real
numbers (since differentiability implies continuity), and thus f is continuous on the interval
[a, b] and differentiable on its interior (a, b). We conclude that g(x), being a difference of f
and a linear function is also continuous on the interval [a, b] and differentiable on its interior
(a, b). Moreover, since a and b are fixed points of f , g(a) = 0 = g(b). Thus, applying Rolle’s
theorem to g, we conclude that there is a value c in the interval (a, b) such that g′(c) = 0.
But then g′(c) = f ′(c) − 1 = 0 =⇒ f ′(c) = 1. If f ′(x) 6= 1 for any real x, then no such c
can exists, so such a function thus cannot have two distinct fixed points, and therefore has
at most one fixed point.

2The terminology “fixed point” is evocative if one considers the effect of iterating the map x 7→ f(x): if f is a
map from a domain D ⊆ R with range contained in D, then consider for any number c in the domain D of f the
sequence O(f, c) :=
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}
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Then a fixed point x = a is one for which this sequence is constant: repeated applications of f leave a fixed, and
a has constant orbit’ under f .


