MATH 131, Fall 2019
Quiz 8 Solutions
his quiz has two sides.

1. Show that for any real numbers a and b,

$$
|\cos b-\cos a| \leq|b-a| .
$$

Let a and b be distinct real numbers. The trigonometric function $\cos x$ is continuous and differentiable for all real numbers x, and thus it is continuous on the closed interval with endpoints a and b, and differentiable on the open interval with endpoints a and b, with derivative $\frac{\mathrm{d}}{\mathrm{d} x} \cos (x)=-\sin (x)$. Thus by the mean value theorem, there is a number c between a and b such that ${ }^{1}$

$$
\cos (b)-\cos (a)=-\sin (c)(b-a) .
$$

Since $0 \leq|\sin (c)| \leq 1$ for any real c, we can take absolute values on both sides of our equation to conclude:

$$
|\cos (b)-\cos (a)|=|-\sin (c)||b-a| \leq|b-a| .
$$

Of course, if $a=b$ we cannot apply the MVT as the interval between a and b consists of a single point $x=a=b$. In this case however, both sides of the desired inequality must yield 0 , and so the inequality is still true when $a=b$. Thus, for any real numbers a and b, we conclude $|\cos b-\cos a| \leq|b-a|$, as was to be shown.

[^0]2. Show that $f(x)=3 x-e^{\cos x}$ has a unique real root.

Note that $f(x)$ is continuous and differentiable for all real numbers, as it consists of a difference of a linear function with a composition of a trigonometric function with an exponential function, each class of which is continuous and differentiable on their domains (in this case all share the domain of the entire real line \mathbb{R}, and differences of continuous and differentiable functions remain continuous and differentiable. In particular, f is continuous on any closed interval, and also differentiable on any open interval.
Observe that $f(0)=-e<0$, and $f(\pi / 2)=3 \pi / 2-e^{0}=3 \pi / 2-1>0$. By continuity and the intermediate value theorem, since $f(0)=-e<0<3 \pi / 2-1=f(\pi / 2)$, we conclude that there is a real number $r, 0<r<\pi / 2$ such that $f(r)=0$, and thus f has a real root. Now, suppose f has more than one distinct real root. Let a and b be two such roots. Note that distinct means precisely that $a \neq b$, but we may assume without loss of generality that $a<b$. We know that f is continuous on the interval $[a, b]$, and differentiable on the interval (a, b). Now, since a and b are both roots, $f(a)=0=f(b)$, and so under the assumption of $a<b$ being distinct roots of f, there is an interval $[a, b]$ over which f meets the hypotheses of Rolle's theorem, and one concludes that between these roots there must be a number c with $f^{\prime}(c)=0$.
However, upon differentiation of f, we have

$$
f^{\prime}(x)=3+\sin (x) e^{\cos x}
$$

Since $0 \leq|\sin x| \leq 1$ and $0 \leq|\cos x| \leq 1$, we know that $\left|\sin (x) e^{\cos x}\right| \leq|1| e^{1}=e$. Since $3>e$, we conclude

$$
f^{\prime}(x)>0 \text { for all } x \text { in } \mathbb{R}
$$

Indeed, the smallest possible value of $f^{\prime}(x)$ is

$$
f^{\prime}(3 \pi / 2)=3-e>0
$$

This contradicts the existence of a c such that $f^{\prime}(c)=0$. Thus the assumption of at least two distinct roots is untenable, and we conclude that the root r guaranteed by the intermediate value theorem is in fact the unique real root of this function.
3. Show that for all $x \geq 1$ the functions $f(x)=2 \cot ^{-1}\left(\frac{1}{\sqrt{x}}\right)$ and $g(x)=\cos ^{-1}\left(\frac{2 \sqrt{x}}{1+x}\right)$ differ by a constant, and determine the value of that constant.

First, we compute the derivatives of these functions, using the assumption that $x>1$ as needed during the simplification:

$$
\begin{aligned}
f^{\prime}(x) & =2 \frac{(-1)}{1+(1 / \sqrt{x})^{2}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{1}{\sqrt{x}}\right) \\
& =\frac{-2}{1+1 / x} \cdot \frac{-1}{2 x \sqrt{x}} \\
& =\frac{1}{x \sqrt{x}+\sqrt{x}}=\frac{1}{\sqrt{x}(x+1)} \cdot \\
g^{\prime}(x)= & \frac{-1}{\sqrt{1-(2 \sqrt{x} /(1+x))^{2}}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{2 \sqrt{x}}{1+x}\right) \\
= & \frac{-1}{\sqrt{1-4 x /(1+x)^{2}}} \cdot\left(\frac{\frac{1+x}{\sqrt{x}}-2 \sqrt{x}}{(1+x)^{2}}\right) \\
= & \frac{-(1+x)}{\sqrt{1+2 x+x^{2}-4 x}} \cdot \frac{1-x}{\sqrt{x}(1+x)^{2}} \\
= & \frac{-(1+x)}{\sqrt{(x-1)^{2}} \cdot \frac{1-x}{\sqrt{x}(1+x)^{2}}} \\
= & \frac{1+x}{1-x} \cdot \frac{1-x}{\sqrt{x}(1+x)^{2}} \\
= & \frac{1}{\sqrt{x}(x+1)} \cdot
\end{aligned}
$$

Since $f^{\prime}(x)=g^{\prime}(x)$ for $x>1$, we conclude that the functions differ by a constant, i.e., that there is some value C such that $f(x)=g(x)+C$. To find C, we evaluate the two functions at a value, such as $x=1$:

$$
f(1)=2 \cot ^{-1}(1 / 1)=\frac{\pi}{2}, \quad g(1)=\cos ^{-1}(2 / 2)=0
$$

thus taking $C=\pi / 2$, we have that

$$
2 \cot ^{-1}\left(\frac{1}{\sqrt{x}}\right)=\cos ^{-1}\left(\frac{2 \sqrt{x}}{1+x}\right)+\frac{\pi}{2} .
$$

4. A point $x=a$ is called a fixed point ${ }^{2}$ of a function $f(x)$ if $f(a)=a$. Show that if $f^{\prime}(x) \neq 1$ for all x then f has at most one fixed point.

Define a new function $g(x)=f(x)-x$. Note that a zero $x=a$ of $g(x)$ corresponds to a fixed point of $f(x): 0=g(a) \Longleftrightarrow 0=f(a)-a \Longleftrightarrow f(a)=a$. Now, suppose that $f(x)$ has two distinct fixed points, a and b, and without loss of generality, suppose $a<b$. Then assuming $f^{\prime}(x)$ exists for all real numbers, we know that $f(x)$ is continuous for all real numbers (since differentiability implies continuity), and thus f is continuous on the interval $[a, b]$ and differentiable on its interior (a, b). We conclude that $g(x)$, being a difference of f and a linear function is also continuous on the interval $[a, b]$ and differentiable on its interior (a, b). Moreover, since a and b are fixed points of $f, g(a)=0=g(b)$. Thus, applying Rolle's theorem to g, we conclude that there is a value c in the interval (a, b) such that $g^{\prime}(c)=0$. But then $g^{\prime}(c)=f^{\prime}(c)-1=0 \Longrightarrow f^{\prime}(c)=1$. If $f^{\prime}(x) \neq 1$ for any real x, then no such c can exists, so such a function thus cannot have two distinct fixed points, and therefore has at most one fixed point.

[^1]
[^0]: ${ }^{1}$ Note that although in the MVT hypotheses one assumes $a<b$, it does not matter if instead $b<a$: switching the labels a and b and then multiplying the equation $f(a)-f(b)=f^{\prime}(c)(a-b)$ by -1 on both sides recovers the MVT conclusion $f(b)-f(a)=f^{\prime}(c)(b-a)$ in its original symbolic form.

[^1]: ${ }^{2}$ The terminology "fixed point" is evocative if one considers the effect of iterating the map $x \mapsto f(x)$: if f is a map from a domain $D \subseteq \mathbb{R}$ with range contained in D, then consider for any number c in the domain D of f the sequence $\mathcal{O}(f, c):=\left\{c, f(c), f(f(c)), f(f(f(c))), \ldots, f^{n}(c), \ldots\right\}$, called the orbit of c under the map $x \mapsto f(x)$. Then a fixed point $x=a$ is one for which this sequence is constant: repeated applications of f leave a fixed, and a has constant orbit' under f.

