MATH 131, Fall 2019
Quiz 6 Solutions

1. You are making pancakes, ladling batter onto a hot griddle. As you ladle batter to make a pancake, the batter forms a disk, which you may model as a stout circular cylinder whose diameter remains 12 times its height as the disk expands. How fast is the radius of the pancake growing when the diameter is 4 inches if you are ladling 2 cubic inches per second of batter onto the griddle?

Since the pancake is modeled as a cylinder with diameter 12 times the height, if d is the diameter, h is the height, and r is the radius, one has $h=\frac{d}{12}=\frac{2 r}{12}=\frac{r}{6}$. Then, using that the volume of a cylinder is $V=\pi r^{2} h$, the volume V can be expressed as a function of the radius r alone:

$$
V=\frac{\pi}{6} r^{3} .
$$

You are ladling 2 cubic inches per second of batter onto the griddle, so $\frac{\mathrm{d} V}{\mathrm{~d} t}=2 \mathrm{in} / \mathrm{s}$. You want to compute $\frac{\mathrm{d} r}{\mathrm{~d} t}$.
Differentiating both sides of the volume equation yields

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\pi}{2} r^{2} \frac{\mathrm{~d} r}{\mathrm{~d} t} \Longrightarrow \frac{\mathrm{~d} r}{\mathrm{~d} t}=\frac{2}{\pi r^{2}} \frac{\mathrm{~d} V}{\mathrm{~d} t} .
$$

To find $\frac{\mathrm{d} r}{\mathrm{~d} t}$ when the diameter is 4 inches, take $r=d / 2=4 / 2=2$ inches as the radius, so

$$
\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{2}{\pi(2 \mathrm{in})^{2}}\left(2 \mathrm{in}^{3} / \mathrm{s}\right)=\frac{1}{\pi} \mathrm{in} / \mathrm{s} .
$$

Thus the radius expands at a rate of $1 / \pi$ inches per second when the pancake is 4 inches in diameter.

