MATH 131, Fall 2019
Quiz 6 Alternate Solutions

1. A 100 milligram sample of an unidentified radioactive substance decays to 80 milligrams after 20 years. Find the half life of the substance, and re-express the mass in milligrams as a function of time in years since you obtained the original 100 milligrams in terms of the half-life.

Since the substance undergoes radioactive decay, we may assume its mass satisfies

$$
m(t)=m_{0} e^{k t}=100 e^{k t}
$$

for some constant $k<0$. Using the data about its decay over the first 20 years:

$$
80=100 e^{k t} \Longrightarrow \frac{4}{5}=e^{k \cdot 20} \Longrightarrow k=\frac{1}{20} \ln (4 / 5)
$$

and so

$$
m(t)=100 e^{(t / 20) \ln (4 / 5)}=100\left(\frac{4}{5}\right)^{t / 20}
$$

We want to find λ such that $m(\lambda)=50$ milligrams, and rewrite $m(t)$ in terms of λ. Then

$$
\frac{1}{2}=\left(\frac{4}{5}\right)^{\lambda / 20} \Longrightarrow \lambda=20 \frac{\ln (1 / 2)}{\ln 4 / 5}=20 \frac{\ln 2}{\ln (5 / 4)}=20 \log _{5 / 4}(2)
$$

Thus the half life is $20 \log _{5 / 4} 2$ years. Note that $3<\log _{5 / 4} 2<4$ since $125 / 64<2<525 / 256$, so the half life is more than 60 years but less than 80 years. Writing the mass in terms of the half life, one has

$$
m(t)=100\left(\frac{1}{2}\right)^{t / 20 \log _{5 / 4}(2)}
$$

2. A particle moves along the curve $x y=1$ such that the particle approaches the y axis with a horizontal velocity component equal to the negative of its x coordinate. If the particle started at the point $(1,1)$, find the time when the particle reaches a point P a distance of $1 / 3$ from the y axis, and find the velocity at which the particle's distance to the x axis increases as it passes through this point P.

The particle is moving along the hyperbola $x y=1$. Since it's horizontal velocity, $d x / d t$ is equal to the negative of it's position, we know $d x / d t=-x$ which implies $x=x_{0} e^{-t}$. Differentiating implicitly we can relate $\mathrm{d} x / \mathrm{d} t$ and $\mathrm{d} y / \mathrm{d} t$:

$$
y \frac{\mathrm{~d} x}{\mathrm{~d} t}+x \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \Longrightarrow-x y+x \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \Longrightarrow \frac{\mathrm{~d} y}{\mathrm{~d} t}=y
$$

If the distance from the y axis is $1 / 3$, then the x coordinate is $x=1 / 3$, and so the y coordinate must be the reciprocal, $y=3$. Then the vertical velocity component is

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=3 .
$$

To find the time to reach this point we use that $x=x_{0} e^{-t}$ with starting position $\left(x_{0}, y_{0}\right)=$ $(1,1)$, and set $1 / 3=x=e^{-t} \Longrightarrow 3=e^{t} \Longrightarrow t=\ln 3$.

