
MATH 131, Fall 2019
Quiz 5 Solutions
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To compute this derivative, we use the chain rule, as well as the fact that
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In case you forgot this, it can be derived from implicit differentiation.This derivation will be presented after
the solution to this problem. Note that the innermost function in the composition sin
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is u =
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and the outermost function is sinw where w = 2 cos−1 u. By the chain rule
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We do not need to simplify further, but if we wished to, we could actually rewrite this as an algebraic function:
using the cosine double angle formula cos 2θ = 2 cos2 θ − 1, with θ = cos−1

√
x, we have
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− 1 = 2x− 1 , 0 ≤ x ≤ 1 .

The derivative then simplifies to
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, 0 < x < 1 .

Note that the derivative is undefined at x = 0 and x = 1, where there are vertical tangencies (as one can show
by computing appropriate limits). One could also write the original function as an algebraic function:
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Using the power and chain rules the derivative of this matches that which we obtained above.
Now, the promised derivation of the derivative of cos−1 u(x). Write y = cos−1 u, which, for u between −1 and
1 is equivalent to u = cos y, with 0 ≤ y ≤ π. We will implicitly differentiate the latter equation, where both u
and y are regarded as dependent on x.
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u′ = − sin(y) · y′

y′ = − 1

sin(y)
= − u′»
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,

where we’ve used that sin2(y) + cos2(y) = 1 to write our final expression in terms of u.



2. Find the equation of the line tangent to the curve x3 + 8xy2 − y5 = 1 at (1, 2). You may leave the equation in
point-slope form if you wish.

Implicitly differentiating one obtains

3x2 + 8y2 + 16xyy′ − 5y4y′ = 0

y′ =
3x2 + 8y2

5y4 − 16xy
,

and the derivative at the point (1, 2) is

y′ =
3 + 32

80− 32
=

35

48
.

Thus the tangent line equation is

y − 2 =
35

48
(x− 1) .

Figure 1: The curve x3 + 8xy2 − y5 = 1 (black) and its tangent line at (1, 2) (red).


