MATH 131, Fall 2019
Quiz 5 Solutions

1. Compute $\frac{\mathrm{d}}{\mathrm{d} t}\left(\cos \left(2 \arctan t^{3}\right)\right)$. You do not need to simplify.

To compute this derivative, we need the chain rule, together with the derivative formula for arctangent

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \tan ^{-1}(u(t))=\frac{u^{\prime}(t)}{1+[u(t)]^{2}} .
$$

In case you forgot this, it can be derived from implicit differentiation. The derivation will be presented after the solution to this problem. Note that the innermost function is $u(t)=t^{3}$, and the outermost function is $\cos w$, with $w=2 \arctan (u)$. By the chain rule

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\cos \left(2 \arctan t^{3}\right)\right) & =-\sin \left(2 \arctan t^{3}\right) \cdot \frac{\mathrm{d}}{\mathrm{~d} t}\left(2 \arctan t^{3}\right) \\
& =-\sin \left(2 \arctan t^{3}\right) \cdot \frac{2 \cdot 3 t^{2}}{1+\left(t^{3}\right)^{2}} \\
& =-\sin \left(2 \arctan t^{3}\right) \frac{6 t^{2}}{1+t^{6}} .
\end{aligned}
$$

We do not need to simplify further, but if we wished to, we could actually rewrite this as an algebraic function: using the sine double angle formula $\sin 2 \theta=2 \sin \theta \cos \theta$, with $\theta=\arctan t^{3}$, we have

$$
-\sin \left(2 \arctan t^{3}\right) \frac{6 t^{2}}{1+t^{6}}=-2 \sin \left(\arctan t^{3}\right) \cos \left(\arctan t^{3}\right) \cdot \frac{6 t^{2}}{1+t^{6}} .
$$

But since $\theta=\arctan t^{3}$, we can write $t^{3}=\tan \theta$. Taking t^{3} to be the length of the side of a right triangle opposite an angle θ, and taking the length of the side adjacent to θ to have length 1 , we discover that the hypotenuse should have length $\sqrt{1+t^{6}}$, and therefore

$$
\begin{aligned}
& \sin \left(\arctan t^{3}\right)=\sin \theta=\frac{\text { opposite length }}{\text { hypotenuse length }}=\frac{t^{3}}{\sqrt{1+t^{6}}}, \\
& \cos \left(\arctan t^{3}\right)=\cos \theta=\frac{\text { adjacent length }}{\text { hypotenuse length }}=\frac{1}{\sqrt{1+t^{6}}},
\end{aligned}
$$

and so the derivative then simplifies to

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\cos \left(2 \arctan t^{3}\right)\right)=-2 \sin \left(\arctan t^{3}\right) \cos \left(\arctan t^{3}\right) \cdot \frac{6 t^{2}}{1+t^{6}}=\frac{-12 t^{5}}{\left(1+t^{6}\right)^{2}} .
$$

One could also write the original function as an algebraic function:

$$
\cos \left(2 \arctan t^{3}\right)=2 \cos ^{2}\left(\arctan t^{3}\right)-1=\frac{2}{1+t^{6}}-1
$$

Using the power and chain rules the derivative of this matches that which we obtained above.

Now, as promised, we'll compute the derivative $\arctan u(x)$ by implicit differentiation. Write $y=\arctan u$, which is equivalent to $u=\tan y$, with $-\pi / 2<y<\pi / 2$. We will implicitly differentiate the latter equation, treating both u and y as dependent on x.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(u) & =\frac{\mathrm{d}}{\mathrm{~d} x}(\tan y) \\
u^{\prime} & =\sec ^{2}(y) \cdot y^{\prime} \\
y^{\prime} & =\frac{u^{\prime}}{\sec ^{2}(y)}=\frac{u^{\prime}}{1+\tan ^{2}(y)}=\frac{u^{\prime}}{1+u^{2}},
\end{aligned}
$$

where we've used that $1+\tan ^{2}(y)=\sec ^{2}(y)$ to write our final expression in terms of u.
2. Use logarithmic differentiation to find y^{\prime} for $y=\sqrt[3]{x} 2 \arcsin (x)$.

A caution: observe that the domain of this function is $[-1,0) \cup(0,1]$, but that upon taking natural logs, if one naively applies that $\ln x^{2}=2 \ln x$, one loses the negative half of the domain. It's better to write $\ln x^{2}=2 \ln |x|$. Taking the natural logarithm of y yields

$$
\ln y=\ln \left[\sqrt[3]{x}^{2 \arcsin (x)}\right]=\arcsin (x) \ln x^{2 / 3}=\frac{2}{3} \arcsin (x) \ln |x|
$$

Taking the derivative and using the product rule, we have

$$
\frac{y^{\prime}}{y}=\frac{2 \ln |x|}{3 \sqrt{1-x^{2}}}+\frac{2 \arcsin (x)}{3 x} .
$$

Solving for y^{\prime}, using the original expression for y, yields

$$
y^{\prime}=y\left[\frac{2 \ln |x|}{3 \sqrt{1-x^{2}}}+\frac{2 \arcsin (x)}{3 x}\right]=x^{2 \arcsin (x) / 3}\left[\frac{2 \ln |x|}{3 \sqrt{1-x^{2}}}+\frac{2 \arcsin (x)}{3 x}\right] .
$$

