MATH 131, Fall 2019
Quiz 4 Solutions

1. Calculate the following derivatives by any means necessary. You do not need to simplify.
(a) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\left(x-e^{x}\right) \tan (x)\right)$,
(b) $f^{\prime}(x)$ for $f(x)=\frac{x^{3}-1}{x^{3}+1}$,
(c) $g^{\prime \prime}(t)$ for $g(t)=\sin (t) \cos (t)$.
(a) Using the product rule:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x-e^{x}\right) \tan (x)\right)=\left(1-e^{x}\right) \tan (x)+\left(x-e^{x}\right) \sec ^{2}(x)
$$

(b) Using the quotient rule:

$$
f^{\prime}(x)=\frac{\left(x^{3}+1\right)\left(3 x^{2}\right)-\left(x^{3}-1\right)\left(3 x^{2}\right)}{\left(x^{3}+1\right)^{2}}=\frac{6 x^{2}}{\left(x^{3}+1\right)^{2}}
$$

(c) There are a few approaches. Without chain rule, one can use repeated product rules:

$$
\begin{aligned}
& g^{\prime}(t)=(\sin t)^{\prime}(\cos t)+(\sin t)(\cos t)^{\prime}=\cos ^{2} t-\sin ^{2} t \\
g^{\prime \prime}(x)= & (\cos t)^{\prime}(\cos t)+(\cos t)(\cos t)^{\prime}-(\sin t)^{\prime}(\sin t)-(\sin t)^{\prime}(\sin t) \\
= & -4 \sin t \cos t
\end{aligned}
$$

If one knows the chain rule, the last calculation can be recovered using that $\left(\cos ^{2} t\right)^{\prime}=$ $2 \cos t(\cos t)^{\prime}=-2 \cos t \sin t$, and $\left(\sin ^{2} t\right)^{\prime}=2 \sin t(\sin t)^{\prime}=2 \cos t \sin t$.

Finally, if one recognizes the double angle identity $g(t)=\sin (t) \cos (t)=\frac{1}{2} \sin (2 t)$, then one can use the chain rule twice:

$$
\begin{gathered}
g^{\prime}(x)=\frac{1}{2}(\sin (2 t))^{\prime}=\frac{1}{2} \cos (2 t) \cdot(2 t)^{\prime}=\cos (2 t) \\
g^{\prime \prime}(x)=(\cos (2 t))^{\prime}=-2 \sin (2 t)
\end{gathered}
$$

Note that the double angle formulae for sine and cosine show that these expressions are equal to those obtained by the repeated applications of the product rule.
2. Let $f(x)=\frac{x}{e^{x}}-4 \sin (x)$. Find $f^{(102)}(x)$, the 102 nd derivative of $f(x)$.

Observe first that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x}{e^{x}}\right)=\frac{1-x}{e^{x}}
$$

either by the quotient rule or by applying the product and chain rules (since $x / e^{x}=x e^{-x}$). Calculating the next derivative we obtain

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\left(\frac{x}{e^{x}}\right)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1-x}{e^{x}}\right)=\frac{-e^{x}-(1-x) e^{x}}{e^{2 x}}=\frac{-2+x}{e^{x}}=(x-2) e^{-x} .
$$

The general pattern is

$$
\begin{aligned}
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(\frac{x}{e^{x}}\right) & = \begin{cases}(n-x) e^{-x} & \text { if } n \text { is odd }, \\
(x-n) e^{-x} & \text { if } n \text { is even }\end{cases} \\
& =(-1)^{n}(x-n) e^{-x} .
\end{aligned}
$$

Next, using the periodicity of derivatives of $\sin x$, we deduce that

$$
\frac{\mathrm{d}^{102}}{\mathrm{~d} x^{102}} \sin x=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \frac{\mathrm{~d}^{100}}{\mathrm{~d} x^{100}} \sin x=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \sin x=-\sin x
$$

whence

$$
f^{(102)}(x)=(x-102) e^{-x}+4 \sin x .
$$

