MATH 131, Fall 2019
Quiz 3
09/26/19

Name: \qquad
Section: \qquad

For full credit you must present a clearly organized solution, showing all supporting calculations. This quiz has two sides!

1. Use the limit definition of the derivative to find $f^{\prime}(x)$ for

$$
f(x)=2+4 x-x^{2} .
$$

2. Find values of m and b such that the function

$$
g(x)= \begin{cases}2+4 x-x^{2} & \text { if } x \geq 0 \\ m x+b & \text { if } x<0\end{cases}
$$

is differentiable when $x=0$. You may use the results of the first question, but should still carefully justify differentiability of g at $x=0$ by appealing to appropriate definitions or theorems.

