MATH 131, Fall 2019
Quiz 3 Solutions

his quiz has two sides!

1. Let ¢ be a constant. Use the limit definition of the derivative to find f'(z) for

f(z) = (cx)* — caB.
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2. Find all values of ¢ such that the function
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is differentiable when = = 1. You may use the results of the first question, but should still carefully
justify differentiability of g at x = 1 by appealing to appropriate definitions or theorems.

Recall, a function g is differentiable at x = a if the derivative ¢’(a) exists. Thus, we must
guarantee that ¢'(1) exists. Since g is defined as a piecewise function with two pieces meeting
at x = 1, we must ensure that the limiting derivative values from the left and right agree:
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For the right-sided limit, as we approach 1, we use the linear piece of g:
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The limit will exist and return a real number if and only if

g(1) = lim g(z) = lim 2z =2,
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in which case the limit for ¢’(1) is
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2.

For the left-sided limit, as we approach 1, we use the cubic branch of g, which is the function
f(x) = (cz)? — cx® from the first question:
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In particular, this limit is just the derivative calculated in the first part, evaluated when
r=1:
f(1) =2¢% - 3c.
Since the left- and right-sided limits must agree for g to be differentiable at x = 1, we require
that
2¢2 — 3¢ = 2 or equivalently, 2¢> —3¢—2=0.

Factoring yields 2¢? — 3¢ — 2 = (2¢ + 1)(c — 2) which gives two potential ¢ values: ¢ = 2 or

¢ = —1/2. However, we know ¢(1) must equal 2, and if we choose ¢ = —1/2, we get
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in contradiction with our conclusions above. Thus the only solution is ¢ = 2, which gives
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Another way to arrive at this final conclusion is to recall that differentiability implies con-
tinuity, and so for g to be differentiable, we needed continuity (which is imposed when we
realize that the right-sided derivative limit requires a value of g(1) consistent with the limit
of the linear right piece of the graph). From this perspective, we found the only value of ¢
for which a cubic polynomial of the form y = (cz)? — cz® has tangent line y = 2z, tangent
when z =1 (so y necessarily has to equal 2 at the point of tangency).




