MATH 131, Fall 2019
Quiz 3 Solutions
his quiz has two sides!

1. Let c be a constant. Use the limit definition of the derivative to find $f^{\prime}(x)$ for

$$
f(x)=(c x)^{2}-c x^{3}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{c^{2}(x+h)^{2}-c(x+h)^{3}-c^{2} x^{2}+c x^{3}}{h} \\
& =\lim _{h \rightarrow 0}\left[c^{2} \frac{(x+h)^{2}-x^{2}}{h}-c \frac{(x+h)^{3}-x^{3}}{h}\right] \\
& =c^{2} \lim _{h \rightarrow 0}\left[\frac{x^{2}+2 x h+h^{2}-x^{2}}{h}\right]-c \lim _{h \rightarrow 0}\left[\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h}\right] \\
& =c^{2} \lim _{h \rightarrow 0}(2 x+h)-c \lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right) \\
& =c^{2}(2 x)-c\left(3 x^{2}\right) \\
& =2 c^{2} x-3 c x^{2}=(c x)(2 c-3 x) .
\end{aligned}
$$

2. Find all values of c such that the function

$$
g(x)= \begin{cases}(c x)^{2}-c x^{3} & \text { if } x \leq 1 \\ 2 x & \text { if } x>1\end{cases}
$$

is differentiable when $x=1$. You may use the results of the first question, but should still carefully justify differentiability of g at $x=1$ by appealing to appropriate definitions or theorems.

Recall, a function g is differentiable at $x=a$ if the derivative $g^{\prime}(a)$ exists. Thus, we must guarantee that $g^{\prime}(1)$ exists. Since g is defined as a piecewise function with two pieces meeting at $x=1$, we must ensure that the limiting derivative values from the left and right agree:

$$
g^{\prime}(1)=\lim _{x \rightarrow 1} \frac{g(x)-g(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{g(x)-g(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{g(x)-g(1)}{x-1} .
$$

For the right-sided limit, as we approach 1 , we use the linear piece of g :

$$
g^{\prime}(1)=\lim _{x \rightarrow 1^{-}} \frac{g(x)-g(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{2 x-g(1)}{x-1} .
$$

The limit will exist and return a real number if and only if

$$
g(1)=\lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}} 2 x=2,
$$

in which case the limit for $g^{\prime}(1)$ is

$$
\lim _{x \rightarrow 1^{+}} \frac{2 x-1}{x-1}=2 \lim _{x \rightarrow 1^{+}} \frac{x-1}{x-1}=2 .
$$

For the left-sided limit, as we approach 1 , we use the cubic branch of g, which is the function $f(x)=(c x)^{2}-c x^{3}$ from the first question:

$$
g^{\prime}(1)=\lim _{x \rightarrow 1^{-}} \frac{g(x)-g(1)}{x-1}=\lim _{h \rightarrow 0^{-}} \frac{g(1+h)-g(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=f^{\prime}(1),
$$

In particular, this limit is just the derivative calculated in the first part, evaluated when $x=1$:

$$
f^{\prime}(1)=2 c^{2}-3 c .
$$

Since the left- and right-sided limits must agree for g to be differentiable at $x=1$, we require that

$$
2 c^{2}-3 c=2 \text { or equivalently, } 2 c^{2}-3 c-2=0 .
$$

Factoring yields $2 c^{2}-3 c-2=(2 c+1)(c-2)$ which gives two potential c values: $c=2$ or $c=-1 / 2$. However, we know $g(1)$ must equal 2 , and if we choose $c=-1 / 2$, we get

$$
g(1)=\frac{1}{4}+\frac{1}{2}=\frac{3}{4} \neq 2,
$$

in contradiction with our conclusions above. Thus the only solution is $c=2$, which gives

$$
\begin{cases}4 x^{2}-2 x^{3} & \text { if } x \leq 1 \\ 2 x & \text { if } x>1\end{cases}
$$

Another way to arrive at this final conclusion is to recall that differentiability implies continuity, and so for g to be differentiable, we needed continuity (which is imposed when we realize that the right-sided derivative limit requires a value of $g(1)$ consistent with the limit of the linear right piece of the graph). From this perspective, we found the only value of c for which a cubic polynomial of the form $y=(c x)^{2}-c x^{3}$ has tangent line $y=2 x$, tangent when $x=1$ (so y necessarily has to equal 2 at the point of tangency).

