MATH 131, Fall 2019
Quiz 2 Solutions

1. Use the limit laws to evaluate

$$
\lim _{x \rightarrow 2} \ln \left[\frac{x^{2}-2 x}{x^{3}-8}\right] .
$$

Note that the fraction $\left(x^{2}-2 x\right) /\left(x^{3}-8\right)$ is positive for $x>0$. By continuity of $\ln x$ on its domain $(0, \infty)$, we can pass the limit inside and simplify the fraction within the limit:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \ln \left[\frac{x^{2}-2 x}{x^{3}-8}\right] & =\ln \left[\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{x^{3}-8}\right] \\
& =\ln \left[\lim _{x \rightarrow 2} \frac{x(x-2)}{(x-2)\left(x^{2}+2 x+4\right)}\right] \\
& =\ln \left[\lim _{x \rightarrow 2} \frac{x}{\left(x^{2}+2 x+4\right)}\right] \\
& =\ln \left[\frac{2}{\left(2^{2}+2(2)+4\right)}\right] \\
& =\ln \left[\frac{2}{12}\right]=-\ln 6 .
\end{aligned}
$$

2. Find all numbers $c$ such that the function

$$
f(x)= \begin{cases}9-x^{2} & \text { if } x \geq 3 \\ -x^{3}-7 c x-4 c^{2} & \text { if } x<3\end{cases}
$$

is continuous on $(-\infty, \infty)$.

Note that $f(x)$ is piecewise and the pieces are each polynomials in $x$, and thus the pieces are continuous over the subdomains in which they are used (because, as functions on $\mathbb{R}$ they are continuous throughout $\mathbb{R}$ ). To determine $c$ we need to ensure the equality of left and right limits at the transition between pieces, that is, we need

$$
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)
$$

Observe that by restricting the domain and using direct substitution

$$
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left(9-x^{2}\right)=9-(3)^{2}=0,
$$

thus, we must choose $c$ so that

$$
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}\left(-x^{3}-7 c x-4 c^{2}\right)=0 .
$$

By direct substitution again, we obtain the equation

$$
-27-21 c-4 c^{2}=0 .
$$

This factors as $-(c+3)(4 c+9)=0$. Thus $c$ could either be equal to -3 or $-9 / 4$.

