MATH 131, Fall 2019
Quiz 1 Solutions

1. Evaluate the limit

$$
\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}-1\right) \cos \left(\frac{1}{x}\right)
$$

You must use the limit laws to justify your limit calculation. (You can invoke the value of $\lim _{x \rightarrow 0} \sin (x) / x$ without proof.)

We will make use of the fact that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, and apply limit laws to show that

$$
\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}-1\right)=0
$$

Indeed:

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}-1\right) & =\lim _{x \rightarrow 0} \frac{x}{\sin x}-\lim _{x \rightarrow 0} 1 \\
& =\frac{1}{\lim _{x \rightarrow 0} \sin (x) / x}-1 \\
& =1-1=0 .
\end{aligned}
$$

Next, we observe that, although $\lim _{x \rightarrow 0} \cos (1 / x)$ does not exist, we can still apply the squeeze theorem and compute the limit of the product. Recall cosine is bounded:

$$
-1 \leq \cos (1 / x) \leq 1
$$

for every nonzero real number x. Now, since $\frac{x}{\sin x} \geq 1$ for sufficiently small x,

$$
1-\frac{x}{\sin x} \leq\left(\frac{x}{\sin x}-1\right) \cos \left(\frac{1}{x}\right) \leq \frac{x}{\sin x}-1
$$

for x sufficiently close to 0 . Thus, since $1-\frac{x}{\sin x}$ and $\frac{x}{\sin x}-1$ both approach 0 as x approaches 0 , by the squeeze theorem

$$
\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}-1\right) \cos \left(\frac{1}{x}\right)=0 .
$$

