Fundamental groups of number fields
FARSHID HAJIR

In this mostly expository lecture aimed at low-dimensional topologists, I out-
lined some basic facts and problems of algebraic number theory. My focus was
on one particular aspect of the rich set of analogies between number fields and
3-manifolds dubbed Arithmetic Topology. Namely, I discussed the role played in
number theory by “fundamental groups” of number fields, and related some of the
history of the subject over the past fifty years, since the unexpected discovery by
Golod and Shafarevich of number fields with infinite fundamental group; see the
monograph of Neukirch, Schmidt, Wingberg [10] for a comprehensive account. A
conjecture of Fontaine and Mazur [3] has been influential in stimulating work on
the structure of these infinite fundamental groups in recent years. I presented a for-
mulation of this conjecture as it relates to the asymptotic growth of discriminants
[6]. This discussion then served as motivation for a question about non-compact,
finite-volume, 3-manifolds inspired by the following dictionary.

Topology Arithmetic
M non-compact, finite-volume K a number field
hyperbolic 3-manifold or, more precisely, X = SpecOg
universal cover M K = max. unramified extension of K
fundamental group 71 (M) Gal(K/K) ~ n¢'(X)
Klein-bottle cusps of M Real (“unoriented”) places of K
Torus cusps of M Complex (“oriented”) places of K
r1 = # Klein-bottle cusps of M r1 = # Real places of K
r9 = # Torus cusps of M ro = # Complex places of K
r =11+ 19 = # cusps of M r =11+ 1y = # places of K at oo
n = ry + 2ro = weighted # cusps n=ry+2ry =[K:Q]
vol(M) = volume of M log |dk|, di = discriminant of K

There are multiple accounts of the dictionary of arithmetic topology; these in-
clude Reznikov [12], Ramachandran [11], Deninger [2], Morin [9], and Morishita
[8]. For the subtle distinction between Gal(K/K) and the étale fundamental
group of Spec Ok when K is not “orientable,” i.e. r1(K) # 0, see Ramachandran
[11]. T hit upon the analogy between cusps and infinite places as well as be-
tween volumes and discriminants during several conversations with Champanekar
and Dunfield at the 2010 Oberwolfach meeting on Low-dimensional topology and
number theory, and wish to thank them both for their patient explanations to a
non-specialist. For Ramachandran’s justification of the cusps-places analogy, see
section 2 of Deninger [2]. As justification for drawing a parallel between volumes
for hyperbolic 3-manifolds (or more generally Gromov norms of 3-manifolds) with
logarithmic discriminants for number fields, I limit myself here to appealing to the
“Riemann-Hurwitz genus formula for number fields,”

log |dL| = [L : K] 10g |dK‘ + log |NK/QdL/K|
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where dy,/ is the relative discriminant of L /K. Thus, when L/K is a covering,
i.e. is unramified, the volume scales up by a factor of [L : K], just as with coverings
of manifolds. The relative discrimiant dy,x is made up of a “wild” component
corresponding to prime ideals of K that divide a prime divisor of [L : K] and a
“tame” component. While the latter is easy to compute, the former can be quite
intricate.

The Riemann-Hurwitz formula relates the existence of coverings to the rate
of growth of discriminants. It was this fact which led Minkowski to create his
“geometry of numbers” for the purpose of proving the following conjecture of
Kronecker: Q@ = Q. Minkowski actually showed much more, namely that the
discriminant grows exponentially with the degree. For this reason, we define a
lcﬁ(lf@? L, called the logarithmic
root discriminant. This quantity remains constant in unramified extensions and
remains bounded for extensions which are tamely ramified at a finite number of
primes.

In his proof that discriminants grow exponentially with the degree, Minkowski
found that real and complex places give different contributions. Namely, he found
constants A > B > 0 such that log |dx| > Ar; + Bry —d(n), where d(n) is a small
error term that is in o(n) as n = r; +2rs — co. To reformulate this type of bound
in the language of normalized discriminants, we introduce the parameter ¢t = 1 /n.
The best known values of A, B come from the study of Dedekind zeta functions
of number fields. If we admit the Generalized Riemann Hypothesis for these zeta
functions, we have

normalized discriminant for number fields v(K) :=

(1) v(K) > log(8m) +~ +tn/2 —e(n)

with an explicit error term e(n) that tends to 0 with n = [K : Q].

If we follow the analogy introduced in the table above, we are led to the question:
does the volume of an r-cusped hyperbolic 3-manifold grow linearly with 7 The
answer is yes. Indeed, we have the following theorem of Adams [1]: If M is an
r-cusped hyperbolic 3-manifold, then vol(M) > vsr where vs is the volume of the
reqular ideal tetrahedron.

We note that Adams’ proof relies on Minkowski’s geometry of numbers. Even
without this fact as a provocation, it is natural for a number-theorist to wonder
whether Adams’ theorem can similarly be refined for contributions from torus
cusps and Klein-bottle cusps. A somewhat vague form of the question is: What
are the optimal values of positive constants v; and vy such that every hyperbolic 3-
manifold having r; Klein-bottle and 7o torus cusps satisfies vol(M) > rivy + rove?
To make the question more precise, let us define, for an r-cusped 3-manifold M
with r1 Klein bottle cusps and r —r; = ro torus cusps, the orientation type t of M
to be t = r1/r and its normalized volume to be v(M) := vol(M)/r. Tt is clear that
we intend v(M) to be a reasonable analogue of the logarithmic root discriminant
for number fields.

In number theory, the estimate (1) is of great importance; in particular, an
interesting problem to determine whether the constants in the linear function
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bounding the normalized discriminant from below are optimal; this is measured
by a function defined by Martinet (see [7] and also [5]). As an analogue of the
Martinet function, we define a function & (t) as follows: For a rational number
t €[0,1], define
ﬂ(t) B M olfrgpe ty(]\4)7

the infimum being taken over all hyperbolic 3-manifolds of orientation type ¢.

The question then is to determine (upper and lower bounds for) «7(t). If for
no other reason than for the analogy with asymptotic problems of this type in
number theory and many other contexts (graph theory, coding theory, curves over
finite fields etc., see [4]), it would be very interesting if it can be established that
&/ (t) is a linear function, or that it meets a fixed linear lower bound for many
values of ¢.
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