1. A polynomial \(f(x) \in \mathbb{Z}[x] \) is \textit{primitive} if the greatest common divisor of its coefficients is 1. Prove Gauss’s Lemma: If \(f(x), g(x) \in \mathbb{Z}[x] \) are primitive, then \(f(x)g(x) \) is primitive.

[Hint: Fill in all the details for the following idea: Write \(f(x) = \sum_{i=0}^{n} a_i x^{n-i} \) and \(g(x) = \sum_{j=0}^{m} b_j x^{m-j} \). Suppose \(p \) is a prime and \(i, j \) are the smallest indices satisfying \(p \nmid a_i \) and \(p \nmid b_j \). Consider the coefficient \(x^{i+j} \) in \(f(x)g(x) \).]

2. Recall that if \(K \) is a field containing \(\mathbb{Q} \), an element \(\alpha \in K \) is called an \textit{algebraic number} if and only if there exists \(g(x) \in \mathbb{Q}[x] \) such that \(g(\alpha) = 0 \). If \(\alpha \) is an algebraic number, we let \(\text{Irr}_\alpha(x; \mathbb{Q}) = \text{Irr}_\alpha(x) \) be the monic polynomial in \(\mathbb{Q}[x] \) of least degree having \(\alpha \) as a root. An algebraic number \(\alpha \) is called an \textit{algebraic integer} if there exists a monic polynomial in \(\mathbb{Z}[x] \) having \(\alpha \) as a root.

(a) Use Gauss’ Lemma to prove that if \(\alpha \) is an algebraic integer, then \(\text{Irr}_\alpha(x; \mathbb{Q}) \in \mathbb{Z}[x] \).

(b) Prove that an algebraic number \(\alpha \) is an algebraic integer if and only if \(\text{Irr}_\alpha(x) \in \mathbb{Z}[x] \).

3. (a) Suppose all roots in \(\mathbb{C} \) of a monic polynomial

\[
f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in \mathbb{Q}[x]
\]

have absolute value 1. Show that \(|a_r| \leq \binom{n}{r} \) for \(0 \leq r \leq n-1 \).

(b) Show that for a fixed positive integer \(n \), there are only finitely many algebraic integers of degree \(n \) whose minimal polynomial has all of its roots in \(\mathbb{C} \) on the unit circle. [Hint: think about Problem 2.]

(c) Show that if the minimal polynomial of an algebraic integer \(\alpha \) has all its roots on the unit circle, then \(\alpha^k = 1 \) for some integer \(k \). This is a famous theorem of Leopold Kronecker. [Hint: can the sequence of powers of \(\alpha \) be non-repeating?]

4. Let \(\alpha = \sqrt{5} + \sqrt{13} \). Show that \(\alpha \) is an algebraic integer. Show that \(2|\alpha \) in the sense that \(\alpha/2 \) is also an algebraic integer. Show that \(4 \nmid \alpha \).

5. Let \(\alpha \) be an algebraic number. Show that there exists an integer \(m \) such that \(m\alpha \) is an algebraic integer.

6. Suppose \(\alpha, \beta, \gamma \in K \) where \(K \) is an algebraic number field. Suppose \(\alpha, \beta \) are algebraic integers and \(\gamma \) satisfies \(x^2 + \alpha x + \beta = 0 \). Show that \(\gamma \) is an algebraic integer. Can you generalize this result?

For the due date, check the course web page; check the website periodically for hints, updates, additions, and or corrections.
7. Suppose \(f(x) = x^2 + mx + n \in \mathbb{Z}[x] \) is irreducible. Suppose \(K \) is a field of degree 2 over \(\mathbb{Q} \) and containing an element \(\alpha \) such that \(f(\alpha) = 0 \). (For instance \(K = \mathbb{Q}[x]/(f) \) and \(\alpha = x + (f) \) or \(K = \mathbb{Q}(\alpha) \) and \(\alpha \) is given by the quadratic formula, but no matter). Let \(\mathbb{Q}[\alpha] = \{g(\alpha) \mid g(x) \in \mathbb{Q}[x]\} \) be the set consisting of all \(\mathbb{Q} \)-polynomial expressions in \(\alpha \). Let \(\mathbb{Q}(\alpha) \) be the fraction field of \(\mathbb{Q}[\alpha] \), i.e. the smallest subfield of \(K \) that contains \(\mathbb{Q}[\alpha] \). Let \(d_f = m^2 - 4n \) be the discriminant of \(f \) and suppose \(d_f = dk^2 \) where \(d \) is square-free, meaning the only square that divides it is 1. Show that
 (i) \(\mathbb{Q}[\alpha] \) is a subring of \(K \);
 (ii) \(\mathbb{Q}[\alpha] = \mathbb{Q}(\alpha) \);
 (iii) \(\mathbb{Q}[\alpha] = \mathbb{Q}[\beta] \), where \(\beta = (2\alpha + m)/k \) satisfies \(\beta^2 = d \).

8. Staying with the situation of the preceding problem, let us assume \(\alpha = (-m + \sqrt{d_f})/2 \in \mathbb{C} \) so that \(\beta = \sqrt{d} \). Let \(\mathcal{O}_K \subseteq \mathbb{Q}(\alpha) \) be the set of algebraic integers in \(K = \mathbb{Q}(\alpha) \).
 (i) Suppose \(d \equiv 2, 3 \mod 4 \). Show that \(\mathcal{O}_K = [1, \sqrt{d}]_\mathbb{Z} \).
 Notation: Whenever \(\gamma_1, \ldots, \gamma_t \) are elements of a field \(F \) and \(R \) is a subring of \(F \), we let \([\gamma_1, \ldots, \gamma_t]_R \) be the set of all \(\mathbb{R} \)-linear combinations \(\sum_{i=1}^t r_i \gamma_i \).
 (ii) if \(d \equiv 1 \mod 4 \), show that \(\mathcal{O}_K = [1, 1+\sqrt{d}]_\mathbb{Z} \). [Hint: don’t forget the useful criterion of problem 2].
 (iii) Show that in either case, \(\mathcal{O}_K = [1, \frac{D+\sqrt{D}}{2}]_\mathbb{Z} \), where \(D = d \) if \(d \equiv 1 \mod 4 \) and \(D = 4d \) if \(d \equiv 2, 3 \mod 4 \).

9. Let \(\omega = e^{2\pi i/3} \). What is the quickest way to show that \(\omega \) is an algebraic integer? Now determine \(\text{Irr}_\omega(x) \).

10. Prove or disprove: if \(\alpha \) is an algebraic number, with minimal polynomial \(\text{Irr}_\alpha(x) \), then \(\text{Irr}_\alpha(x) \) does not have repeated roots (in \(\mathbb{C} \)).

11. Let \(\alpha \) be an algebraic number of degree \(n \) over \(\mathbb{Q} \), i.e. \(\text{Irr}_\alpha(x; \mathbb{Q}) \) has degree \(n \). Suppose \(f, g \in \mathbb{Q}[x] \) are polynomials of degree strictly less than \(n \) such that \(f(\alpha) = g(\alpha) \). Show that \(f = g \).