SS 1.5. (a) Suppose \(\Omega = \Omega_1 \coprod \Omega_2 \) with non-empty open subsets \(\Omega_i \).

Let

\[
S = \{ t \in [0,1] : 0 \leq s < t \text{ implies } z(s) \in \Omega_1 \},
\]

and \(t^* = \sup S \). Note that \(t^* \neq 0,1 \) by the non-emptiness assumption on the \(\Omega_i \).

Claim 1. For \(0 \leq t_0 < t^* \), we have \(z(t_0) \in \Omega_1 \). Indeed, by definition of \(t^* \), \(t_0 \) is not an upper bound for \(S \), hence \(t_0 < t \) for some \(t \in S \). By the defining property of \(S \), we then have \(z(t_0) \in \Omega_1 \).

Claim 2. \(z(t^*) \notin \Omega_2 \). Otherwise, since \(\Omega_2 \) is open, we could find \(r > 0 \) with \(D_r(z(t^*)) \subset \Omega_2 \). Let \(X = z^{-1}(D_r(z(t^*))) \) be the inverse image of this disc; by the continuity of \(z \), \(X \) is an open subset of \([0,1]\) and it contains \(t^* \) of course, so for some \(\delta > 0 \), we have \(t^* - \delta < s < t^* + \delta \) implies \(z(s) \in \Omega_2 \). This is in violation of Claim 1 (e.g. take \(t_0 = t^* - \delta/2 \)), so we have established Claim 2. [Note: it turned out to be important to know that \(t^* \neq 0 \! \! \! 1 \)! [Note on previous note: “0!” above means “0 factorial,” which would be 1.]]

Claim 3. \(z(t^*) \notin \Omega_1 \). Suppose otherwise. As above, we choose \(u > 0 \) such that \(D_u(z(t^*)) \subset \Omega_1 \), with inverse image \(Y = z^{-1}(D_u(z(t^*))) \) under \(z \), an open non-empty subset of \([0,1]\). We take \(\epsilon > 0 \) such that the \(\epsilon \)-neighborhood of \(t^* \) is entirely contained in \(Y \) (Note: now we are using the fact that \(t^* \neq 1 \! \! \! 1 \))(Note on previous note: here reading “1!” either way is acceptable). Thus, \((t^* - \epsilon, t^* + \epsilon) \subset Y \). So, \(T = t^* + \epsilon \) has the property that for all \(s \in [0,T) \), \(z(s) \in \Omega_1 \). In other words, \(T \in S \) and \(T > t^* = \sup S \). This is a contradiction.

Claims 2 and 3 are not compatible with the partition \(\Omega = \Omega_1 \coprod \Omega_2 \), hence \(\Omega \) must be connected.

(b) For \(z, w \in \Omega \), we’ll say \(z \) is \(\Omega \)-connectable to \(w \) if there is a smooth path from \(z \) to \(w \) which is entirely contained in \(\Omega \).

We will use the fact that if \(w \in D_r(z_0) \), then the straight line path connecting \(z \) to \(w \) lies entirely in \(D_r(z_0) \). Fix \(w \in \Omega \). Let \(\Omega \) consist of the points in \(\Omega \) which are “\(\Omega \)-connectable” to \(w \) and \(\Omega \) is the set of those points that are not. Clearly, these \(\Omega \) partition \(\Omega \). The constant path \(z : [0,1] \to \{w\} \) shows \(w \) is \(\Omega \)-connected to itself, so \(w \in \Omega_1 \) and \(\Omega_1 \) is non-empty. Now, let’s show it is open. Suppose \(z_0 \in \Omega_1 \). Take \(\delta > 0 \) small enough so that \(D_r(z_0) \subset \Omega \). For all \(z \in D_r(z_0) \), \(z \) is \(D_r(z_0) \)-connectable to \(z_0 \), hence \(\Omega \)-connectable to \(z_0 \). Concatenating this path to one from \(z_0 \) to \(w \), we see that \(z \in \Omega_1 \). Thus, \(\Omega_1 \) is open. Now, suppose there exists \(z_0 \in \Omega_2 \). Take \(\delta > 0 \) small so \(D_{\delta}(z_0) \subset \Omega \). For \(z \) in this disc, should \(z \) be \(\Omega \)-connectable to \(w \), then \(z_0 \) would share the same fate (by concatenation with the straight-line path between \(z_0 \) and \(z \)), contradicting \(z_0 \in \Omega_2 \). Thus \(D_\delta(z_0) \subset \Omega_2 \), hence \(\Omega_2 \) is open as well. But \(\Omega \) is connected, and \(\Omega_1 \) is non-empty, so \(\Omega_2 \) must be empty. In other words, \(\Omega \) is path-connected.
SS 1.7. (a) Let \(f(w, z) = (w - z)/(1 - wz) \). Suppose \(|\zeta| = 1\). Then \(f(\zeta w, \zeta z) = \zeta f(w, z) \). You could say, \(f \) is “\(S^1 \)-homogeneous of degree 1.” For a given pair \((w, z)\) in the closure of the unit disc, if we choose \(\zeta = e^{-i\theta} \) where \(\theta = \arg z \), we then have \((\zeta w, \zeta z)\) is just the rotation of the pair that takes \(z \) to the real line; it also rotates the value of \(f \) by the same angle, which of course does not change its modulus. In other words, \(|f(w, z)| = |f(\zeta w, \zeta z)|\) and \(\zeta z \in \mathbb{R} \), so we’ve reduced to the case where \(z = r \in \mathbb{R} \). In this case, \(|f(z, w)| \leq 1\) if and only if \((w - r)(\overline{w} - r) \leq (1 - wr)(1 - wr)\). A little algebra now takes care of the rest of (a).

Another easy alternate proof can be given later in the term using the Maximum modulus principle.

Suppose \(f = u + iv \) is holomorphic on an open set \(\Omega \) and has constant modulus there, say \(C \). If \(C = 0 \), then \(f \) is identically 0, hence constant, so let’s assume \(C \neq 0 \). We have \(u^2 + v^2 = C \neq 0 \). Differentiating implicitly, we have \(uu_x + vv_x = 0 = uu_y + vv_y \). Suppose \(f'(z_0) = A \neq 0 \) for some \(z_0 \in \Omega \). Then the Jacobian matrix has non-zero determinant \(A \). Multiplying the above system by its inverse, we find \(u, v \) both vanish at \(z_0 \), so \(f \) vanishes at \(z_0 \) as well, but \(f \) has constant, non-zero, modulus, and this is a contradiction. Thus \(f' \) vanished on \(\Omega \) and we can apply corollary ?? to conclude that \(f \) is constant.