I. SS Chapter 2 Exercises 7, 8, 9, 11, 12a

II. Suppose f, f_1, f_2, \ldots are functions on an open subset Ω and that f_1, f_2, f_3, \ldots are holomorphic in Ω (note that f is not assumed to be holomorphic). Suppose the sequence (f_n) converges uniformly on every compact subset of Ω to the function f. Prove that f is holomorphic in Ω and that the sequence of derivatives (f'_n) converges uniformly in every compact subset of Ω to f'.

III. Suppose C is the unit circle traveled counterclockwise once. Calculate the following integrals:

(a) $\int_C \frac{\cos(w)}{w} dw$,
(b) $\int_C \frac{\sin(w)}{w} dw$,
(c) $\int_C \frac{\cos(w^2)}{w} dw$.

IV. Suppose R is long thin rectangle of width δ contained, along with its interior in an open set Ω. Let γ^+ and γ^- be the opposite long sides of R (the perpendicular distance between these two paths is δ) and assume that the two paths are traveled in opposite directions (just as in the “keyhole” contour we used in the proof of Cauchy’s integral formula). Suppose F is a continuous function in Ω. Prove that as δ approaches 0, $\int_{\gamma^-} F(z) dz + \int_{\gamma^+} F(z) dz$ tends to 0.