1. Define the following terms completely and accurately.
A map \(f : G \to K \) is a homomorphism if ...
If \(f : G \to K \) is a homomorphism, then \(\ker(f) \) is ...
If \(G \) is a group and \(H \) is a subgroup of \(G \), then a left coset of \(H \) in \(G \) is ...
If \(G \) is a group and \(H \) is a subgroup of \(G \), then \(G/H \) is ...
If \(G \) is a group and \(H \) is a subgroup of \(G \), then the index of \(H \) in \(G \) (denoted by \([G : H]\)) is ...
A subgroup \(H \) of \(G \) is called normal if ...
The “natural map” from \(G \) to \(G/H \) is defined by ...
If \(H \) is a normal subgroup of \(G \), we give \(G/H \) a natural group structure by defining \(aH \ast bH = ... \)
The first isomorphism theorem states that
Lagrange’s theorem states that
A group is simple if

2. Suppose \(H \) and \(K \) are subgroups of a finite group \(G \) and \(\gcd(|H|, |K|) = 1 \). Show that \(H \cap K = \{e\} \).

3. For each element of \(\mathbb{Z}/12\mathbb{Z} \), determine its order.

4. Suppose \(\psi : G \to J \) is a group homomorphism and \(Q = \text{im}(\psi) \subseteq J \) is the image of \(\psi \). Let \(H = \ker(\psi) \).
 (a) Prove that \(H \) is a normal subgroup of \(G \).
 (b) Prove that the map \(\Psi : G/H \to Q \) defined by \(\Psi(gH) = \psi(g) \) is a well-defined map, i.e. if \(aH = bH \) for \(a, b \in H \), then \(\psi(a) = \psi(b) \) (giving \(\Psi(aH) = \Psi(bH) \)).
 (c) Prove that the map \(\Psi \) from (b) is a homomorphism.
 (d) Prove that \(\Psi : G/H \to Q \) is an isomorphism.

5. Suppose \(m \geq 1 \) is a positive integer. Prove that the subgroup \(H = m\mathbb{Z} \) of the group \(\mathbb{Z} \) (under addition) has index \(m \).

6. Suppose \(H \) and \(K \) are subgroups of a group \(G \). Recall that \(HK = \{hk|h \in H, k \in K\} \) and \(KH = \{kh|k \in K \text{ and } h \in H\} \). Show that \(HK \) is a subgroup of \(G \) if and only if \(HK = KH \).

7. In the group \(S_4 \), let \(V = \{(1), (12)(34), (13)(24), (14)(23)\} \).
 (a) Show that \(V \) is a subgroup of \(S_4 \).
 (b) What is \([S_4 : V]\)? List the cosets of \(V \) explicitly.
 (c) Show that \(V \) is a normal subgroup of \(S_4 \).
 (d) Since \(V \) is a normal subgroup of \(S_4 \), \(S_4/V \) has a natural group structure; calculate the coset \((12)V \ast (123)V \).
(e) Show that \(W = \{ (1), (12)(34) \} \) is a normal subgroup of \(V \).
(f) Show that \(W \) is not a normal subgroup of \(S_4 \).

Remark. Note that \(W \) is normal in \(V \) and \(V \) is normal in \(S_4 \), but \(W \) is not normal in \(S_4 \). Thus, normality is not transitive.

8. If \(G \) is a group and \(H \) is a subgroup of \(G \) of index 2, then \(H \) is a normal subgroup of \(G \).

9. Prove that if \(G \) is a finite group, and \(Q \) is a homomorphic image of \(G \), then \(|Q| \) divides \(|G|\).

10. Prove that if \(G \) is a group of prime order \(p \), then \(G \) is cyclic.

11. Suppose \(G \) is a group of order 36 and \(K \) is a group of order 48, and that \(f : G \to K \) is a homomorphism. Let \(H = \ker(f) \). We obviously have \(1 \leq |H| \leq 48 \). Which of these numbers cannot occur as \(|H|\)?

12. Suppose \(G \) is a group, \(x, y \in G \) are conjugate elements in \(G \), i.e. there exists \(g \in G \) such that \(y = gxg^{-1} \). Prove that \(x, y \) have the same order in \(G \).