Complex Numbers

1. (There are no zero-divisors in \mathbb{C}). Show that if $z, w \in \mathbb{C}$, and $zw = 0$ then either $z = 0$ or $w = 0$. (you may use the fact that this is true for $z, w \in \mathbb{R}$).

2. (a) (Every non-zero complex number is invertible). Show that for each $z \in \mathbb{C}$ such that $z \neq 0$, there exists a unique $w \in \mathbb{C}$ such that $wz = 1$, so it’s okay to write $w = z^{-1} = 1/z$.
 (b) Use (a) to give another proof of the statement in Problem 9.
 (c) For $z = 3 + 4i$, determine $1/z$ and write it in the form $a + bi$ with real numbers a, b.

3. (a) Show that for $z \in \mathbb{C}$, $z = 0$ if and only if $|z| = 0$.
 (b) Prove that $|zw| = |z||w|$.
 (c) Prove using induction that for all $n \in \mathbb{Z}$, $|z^n| = |z|^n$.

4. (a) Show that for $z, w \in \mathbb{C}$, $|z - w|$ is the usual distance from z to w.
 (b) (Triangle Inequality) Give an algebraic proof of the fact that for $z, w \in \mathbb{C}$, $|z - w| \leq |z| + |w|$ and interpret this fact geometrically. Hint: First prove that if $u \in \mathbb{C}$, then $\Re(u) \leq |u|$. Next, argue that it suffices to show that $|z - w|^2 \leq (|z| + |w|)^2$. Now justify each step in the following:

$$|z - w|^2 = (z - w)(\overline{z} - \overline{w}) = |z|^2 + |w|^2 + 2\Re(-zw) \leq |z|^2 + |w|^2 + 2|z\overline{w}| = (|z| + |w|)^2.$$

(c) Shade in the region $\{z \in \mathbb{C} \mid 1 \leq |z - i| \leq 2\}$. It is called an “annulus.” Hint: $|z - i|$ is the distance from z to i.

5. (a) Find four solutions in \mathbb{C} of the equation $z^4 = 1$.
 (b) Using your vast knowledge of trigonometry, evaluate $\zeta = \cos(\theta) + i\sin(\theta)$ where $\theta = 2\pi/6$.
 (c) Verify that $1, \zeta, \zeta^2, \zeta^3, \zeta^4, \zeta^5$ are six distinct solutions of $z^6 = 1$. They are called the sixth roots of unity in \mathbb{C}.
 (d) Draw a fairly accurate picture of the unit circle showing that the roots of $z^4 = 1$ and $z^6 = 1$ all lie on it. (Label the solutions). Use red for the 4 solutions of one equation and Blue for the six solutions of the other.

6. (Autour le théorème de De Moivre) For $z = r(\cos(\theta) + i\sin(\theta)) \in \mathbb{C}$, prove using induction on n that for all $n \in \mathbb{Z}$, $z^n = r^n(\cos(n\theta) + i\sin(n\theta))$.

Extra Credit Problems.
1. Prove that the points \(z_1, z_2, z_3 \) in the complex plane are vertices of an equilateral triangle if and only if
\[
z_1^2 + z_2^2 + z_3^2 = z_1z_2 + z_1z_3 + z_2z_3.
\]

2. Let \(\zeta = e^{2\pi i/5} \) so that \(1, \zeta, \zeta^2, \zeta^3, \zeta^4 \) are the vertices of a regular pentagon. The diagonals of this pentagon meet at the vertices of a smaller regular pentagon. Determine them.

3. (a) Show that for \(A \neq 0 \), the set of all points \((x, y) \) in \(\mathbb{R}^2 \) satisfying \(Ax^2 + Ay^2 + Bx + Cy + D = 0 \) is either empty or a circle. Determine the center and the radius. What happens when \(A = 0 \)?

(b) Suppose \(z_1, z_2 \in \mathbb{C} \) are distinct fixed points in \(\mathbb{C} \) and \(K \) is a fixed positive real number, \(K \neq 1 \). Show that the set of all \(z \in \mathbb{C} \) satisfying
\[
\frac{|z - z_1|}{|z - z_2|} = K
\]
is a circle. Where is its center? What is its radius? How are \(z_1, z_2 \) positioned vis à vis this circle? If we keep \(K \) fixed and move \(z_1 \) along a straight line toward \(z_2 \), what happens to the center and radius of the circle? What happens when we move \(z_1 \) along the same straight line away from \(z_2 \)? If we keep \(z_1, z_2 \) fixed and move \(K \) toward 0 or toward \(\infty \), what happens to the circle? What happens when \(K = 1 \)?

4. (a) Let \(S \) be a set of size \(n \geq 1 \) and suppose \(r \) is an integer in the range \(0 \leq r \leq n \). Let
\[
P_r(S) = \{ T \subseteq S \mid |T| = r \}
\]
be the set of all subsets of \(S \) of cardinality \(r \). Use the multiplication counting principle to deduce that
\[
|P_r(S)| = \frac{n!}{r!(n - r)!}.
\]
This number is often denoted by \(\binom{n}{r} \).

(b) With the above notations for \(n \) and \(r \) and for variables \(x \) and \(y \), derive the binomial formula
\[
(x + y)^n = \sum_{r=0}^{n} \binom{n}{r} x^r y^{n-r}.
\]

5. (a) Use the well-ordering principle to prove the Principle of Double Induction: Suppose for each pair \((a, b) \in \mathbb{N} \times \mathbb{N} \), we have a statement \(P(a, b) \). Suppose i) \(P(1, 1) \) is true, and ii) Whenever \(P(k, l) \) true for some \((k, l) \in \mathbb{N} \times \mathbb{N} \), then \(P(k + 1, l) \) and \(P(k, l + 1) \) are also true. Then \(P(a, b) \) is true for all \((a, b) \in \mathbb{N} \).

(b) Now prove a slight modification: Suppose for all integers \(n, r \geq 1 \) with \(r \leq n \), we have a statement \(P(n, r) \). Suppose i) \(P(1, 1) \) is true and ii) Whenever \(P(k, l) \) is true for some \((k, l) \in \mathbb{N} \times \mathbb{N} \) with \(l \leq k \), then \(P(k + 1, l) \) and \(P(k + 1, l + 1) \) are true. Then \(P(a, b) \) is true for all \((n, r) \in \mathbb{N} \) with \(r \leq n \).

6. For a positive integer \(n \), we let \(I_n = \{ k \in \mathbb{Z} \mid 1 \leq k \leq n \} \) be the set of integers from 1 to \(n \). If \(T \) is a subset of \(I_n \), let \(m_T \) be the least element of \(T \). For \(1 \leq r \leq n \), let \(f(n, r) \) be
the average, over all subsets T of I_n of cardinality r, of m_T. Recalling from problem 4 above that there are $\binom{n}{r}$ subsets of cardinality r in I_n, we have, therefore,

$$f(n, r) := \frac{1}{\binom{n}{r}} \sum_{T \subseteq I_n, |T| = r} m_T.$$

Prove that

$$f(n, r) = \frac{n + 1}{r + 1}.$$