You should read Part 5 of Farshid’s notes.

1. Problems from Farshid’s Brain

1. Consider the following relation on \(\mathbb{Z} \): if \(a, b \in \mathbb{Z} \), then \(a \sim b \) if and only if \(a \cdot b \) is even. Prove or Disprove: \(\sim \) defines an equivalence relation on \(\mathbb{Z} \).

2. Suppose \(X \) is a set and \(\sim \) is an equivalence relation on \(X \). Suppose \(x, z \in X \). Prove that either \(\text{Eq}(x) = \text{Eq}(z) \) or else \(\text{Eq}(x) \cap \text{Eq}(z) = \emptyset \). [Hint: In other words, show that \(\text{cl}(x) \neq \text{cl}(z) \Rightarrow \text{cl}(x) \cap \text{cl}(z) = \emptyset \).]

3. Suppose \(\sim \) is an equivalence relation on a set \(X \) with graph \(R \). For \(x \in X \), show that \(R_x \cdot = R_{\cdot x} \).

4. If \(X \) is a set and \(\sim \) is an equivalence relation on it, then we have a map \(X \to X/\sim \) defined by \(x \mapsto \text{cl}(x) \). Show that this map is surjective. (Hint: this is a very easy problem; it requires only a careful examination of the definitions involved).

5. Suppose \(\Delta \subseteq \mathcal{P}(X) \setminus \emptyset \) is a collection of non-empty subsets of \(X \). Show that \(\Delta \) is a partition of \(X \) if and only if for every \(x \in X \) there exists a unique \(S \in \Delta \) such that \(x \in S \).

6. Consider the map \(f : \mathbb{Z} \to \mathbb{Z}_{12} \) where \(\mathbb{Z}_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\} \) given by “reducing modulo 12” i.e. \(f(n) \) is the remainder of \(n \div 12 \).
 (a) Is this a surjective map? Explain.
 (b) Describe how this map induces a partition of \(\mathbb{Z} \).
 (c) Describe how this map induces an equivalent relation on \(\mathbb{Z} \) and give the defining rule for this relation, namely if \(x, y \in \mathbb{Z} \), then \(x \sim y \) if and only if?
 (d) How many equivalence classes does this equivalence relation have?