1. Reading

Please read 6.1, 6.3, 6.4, 6.5, and 6.6 of Gilbert/Vanstone. You should also read Part III of Farshid’s notes.

2. Problems from Gilbert/Vanstone

None.

3. Problems from Farshid’s Brain

1. Write down the negation of the following statements; in each case attempt to cast the statement in positive terms, meaning attempt to eliminate the word “not” from your statement. For example, while it is true that the negation of P: The integer n is odd is $\neg P$: The integer n is not odd, it is more useful to write $\neg P$: The integer n is even.

(a) A: The triangle ABC is equilateral.
(b) B: For all real numbers $x \geq 0$, $x^2 - x \leq 0$.
(c) C: There exist integers m, n such that $m^2 = 2n^2$.
(d) D: If a and b are integers with $\gcd(a, b) = 2$, then there exist integers x and y such that $ax + by = 1$.

2. In this problem, let a, b, c be integers. Write down the converse of the following statements:

(a) If a and b satisfy $\gcd(a, b) = 1$, then there exist integers x, y such that $ax + by = 1$.
(b) If a divides bc, then either a divides b or a divides c.
(c) Show that (b) is false by providing a counterexample.

3. Suppose a, b, c denote the lengths of the three edges of some triangle in the plane. Write down first the converse and then the contrapositive of the following statement.

R: If the angle subtended by the sides of length a and b is 90 degrees, then $a^2 + b^2 = c^2$.

Give your opinion on the validity of R, its converse and its contrapositive.

4. Consider the following sets

$$A = \{x \in \mathbb{R} | x^2 - x \leq 0\}$$
$$B = \{x \in \mathbb{R} | -(x - 1)(x - 3) \leq 0\}$$
$$C = \{x \in \mathbb{R} | x \geq 1\}.$$

(a) Determine $A \cap B$.
(b) Determine $A \cap C$.