1. Reading

You should read all of Chapter 1 in Gilbert/Vanstone as well as Part II of Farshid’s class notes.

2. Problems from Gilbert/Vanstone Chapter 1

Exercise Set 1 (p. 20): 1-13, 25, 41-44, 56, 58, 60, 64, 66, 69.
Problem Set 1 (p. 22): 74, 76.

3. Problems from Farshid’s brain

1. Prove that \(P \implies (P \lor Q) \) is a tautology, i.e. its truth table has value “True” in all cases.

2. Consider the following statement.
 \(A \): All residents of Amherst MA are residents of Massachusetts.
 (a) Rewrite \(A \) in the form of an implication i.e. in the form If \(P \), then \(Q \).
 (b) Now give the converse of \(A \).
 (c) Is \(A \) true? Explain.
 (d) Is the converse of \(A \) true? Explain.

3. (a) Suppose the union of ten sets \(A_1 \cup A_2 \cup \cdots \cup A_{10} \) equals \(A_1 \). What can you conclude about these sets?
 (b) Suppose the intersection of ten sets \(B_1 \cap B_2 \cap \cdots \cap B_{10} \) is \(B_1 \). What can you conclude about these sets?

4. Consider the sets \(A = \{0, 1\}, B = \{a, b, c\} \). List the elements of the sets \(A \times A, A \times B, B \times A, A \times B \times A \).

5. Prove that if \(P \implies Q \) and \(Q \implies R \) and \(R \implies P \), then \(P, Q, R \) are all pairwise equivalent.

4. Extra Credit

1. Construct a sequence of sets \(S_1, S_2, S_3, \ldots \) (one for each natural number) such that for any finite subset \(\{i_1, \ldots, i_n\} \subseteq \mathbb{N} \) of the natural numbers, the intersection \(S_{i_1} \cap \cdots \cap S_{i_n} \) is an infinite set, but \(\cap_{n \geq 1} S_n = \{\} \).