1. Write the following system of equations as a matrix equation and find all solutions using Gaussian elimination:

\[
\begin{align*}
 x + 2y + 4z &= 0, \\
 -x + 3y + z &= -5, \\
 2x + y + 5z &= 3.
\end{align*}
\]

2. (a) Suppose \(T \) is a linear transformation represented by a matrix \(A \). What does it mean for a vector \(v \) to be in the kernel of \(T \) (or, equivalently, in the kernel of the matrix \(A \))?

(b) Let \(A \) be the matrix \[
\begin{pmatrix}
 1 & 2 & 5 \\
 -2 & 0 & -2 \\
 3 & -1 & 1
\end{pmatrix}
\]. Is \[
\begin{pmatrix}
 1 \\
 2 \\
 -1
\end{pmatrix}
\] an element of the kernel of \(A \)? Why or why not?

3. Let \(V \subseteq \mathbb{R}^n \) be a subspace of \(\mathbb{R}^n \). Define what it means for a list \(v_1, \ldots, v_k \) of vectors in \(\mathbb{R}^n \) to be a) linearly independent, b) to span \(V \), and c) to be a basis of \(V \).

Let \[
A = \begin{pmatrix}
 1 & 2 & 3 & -1 \\
 -1 & 0 & 1 & -1 \\
 -1 & 4 & 3 & -5
\end{pmatrix}.
\]

Give a list of linearly independent vectors that span \(\ker(A) \).

4. Let \(A \) be a \(n \) by \(m \) matrix, so \(A \) gives a linear transformation from \(\mathbb{R}^m \) to \(\mathbb{R}^n \). Let \(x_1, x_2 \in \mathbb{R}^m \). Assume that \(A(x_1) = A(x_2) \). Show that \(x_1 - x_2 \) is in the kernel of \(A \). What property of matrix multiplication did you use in the process?

5. Let \(L \) be a line through the origin and let \(u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \) be a vector of length 1 lying along that line. Let \(A \) be a matrix whose effect on the plane is to reflect about the line \(L \). Let \(v = \begin{pmatrix} -u_2 \\ u_1 \end{pmatrix} \). In terms of \(u \) and \(v \) what is \(A(u) \)? what is \(A(v) \)? Write \(e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) as a linear combination of \(u \) and \(v \). Use the answer to the previous question to compute \(A(e_1) \).

6. Let

\[
A = \begin{pmatrix}
 1 & 0 & -1 \\
 0 & 1 & 2 \\
 2 & 1 & -1
\end{pmatrix}.
\]

(a) Determine whether the columns of \(A \) are linearly independent or not. Show your work.

(a) Use the row reduction method to find the inverse matrix \(A^{-1} \).
(b) By using A^{-1}, solve the system

$$A\vec{x} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

for $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.

7. Compute the product AB of the two matrices A, B given below, if possible. If it is not possible say why it is not possible.

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 3 & -2 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 0 \\ 4 & 8 \end{pmatrix}$$

The product matrix AB represents a linear transformation from \mathbb{R}^m to \mathbb{R}^n. Determine m and n.

8. Find a basis of the subspace of \mathbb{R}^3 defined by $3x - y + z = 0$. What is the dimension of this subspace?

9. Consider the matrix

$$A = \begin{pmatrix} 1 & 0 & 4 \\ 2 & 1 & 10 \\ 3 & 1 & c \end{pmatrix}.$$

a) Find all the value(s) of c for which the matrix A is not invertible.

b) For what value(s) of c does the linear system

$$A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 14 \\ 20 \end{pmatrix}$$

have no solution?

10. Suppose A and B are $n \times n$ matrices such that $AB = 0$ where 0 is the $n \times n$ all-zeros matrix. Show that if A is invertible, then $B = 0$.

2