Farshid Hajir* and Christian Maire

On The Fontaine-Mazur Conjecture

*Supported in part by NSF Grant 0226869
I. The Fontaine-Mazur Conjecture

K a number field, signature (r_1, r_2)
$G_K = \text{Gal}(\bar{K}/K)$

An irreducible p-adic Galois representation
$\rho : G_K \to \text{GL}_n(\mathbb{Q}_p)$ is called geometric if

- ρ is unramified outside a finite set of places of K
- ρ is potentially semistable at all places

Remarks 1. More precisely, the second condition requires that the restriction of ρ to each decomposition group D_v become semistable (in the sense of Fontaine) after a suitable finite base change.

2. By a Theorem of Grothendieck, at a place v of residue characteristic $\ell \neq p$, every representation is potentially semistable (after base change, its image is quasi-unipotent).
We say \(\rho \) comes from \textit{algebraic geometry} if it is a Tate twist of the action of \(G_K \) on a subquotient of the étale cohomology of some (smooth, projective) variety over \(K \).

\textbf{CONJECTURE (FM, '95)} \(\rho \) is geometric \(\iff \) it comes from algebraic geometry.

The “\(\iff \)” implication has a much longer history and was established by Tsuji '99. The other direction is a vast “Reciprocity Law,” e.g. FM implies that elliptic curves over \(\mathbb{Q} \) are modular: FM \(\Rightarrow \) STWWTDCB.
II. Tamely Ramified Fontaine-Mazur

Let S be a finite set of places of K. If the places in S all have residue characteristic $\neq p$ we say that “S is away from p”

- $K_S = \text{the maximal } p\text{-extension (inside } \bar{K} \text{) of } K \text{ unramified outside } S$
- $G_S = \text{Gal}(K_S/K)$, a finitely generated pro-p group

Tame-Wild Dichotomy

- **Wild Case** If S contains all the K-primes dividing p, then G_S is infinite: e.g. G_S is equipped with (at least $r_2 + 1$) surjections to \mathbb{Z}_p, and these go a long way toward illuminating the structure of G_S (e.g. it has finite cohomological dimension, ...)

- **Tame Case** On the other hand, if S is away from p, then sometimes G_S is finite, and sometimes it is infinite (as first shown by Golod and Shafarevich in 1964).
Notation. If G is a pro-p group, $d(G) = \dim_{\mathbb{F}_p} H^1(G, \mathbb{F}_p)$, $r(G) = \dim_{\mathbb{F}_p} H^2(G, \mathbb{F}_p)$. These are the minimal number of generators and relations, respectively, in a presentation of G as a pro-p group. Note that $d(G) = d(G^{\text{ab}})$ (Burnside Basis Thm); in particular, we can calculate $d(G_S)$ as the rank of an appropriate class group by class field theory.

Golod-Shafarevich Strategy (S away from p):

A. $r(G_S) - d(G_S) \leq r_1 + r_2 \leq [K : \mathbb{Q}]$

B. If G is a finite p-group, then $r(G) > d(G)^2/4$.

$A + B = C$. If $d(G_S) \geq 2 + 2\sqrt{r_1 + r_2 + 1}$, then G_S is infinite.

Other than the Golod-Shafarevich Criterion above, not much is known about the “tame fundamental groups” G_S.
The Fontaine-Mazur conjecture has the following consequence for the structure of G_S in the tame case, assuming standard alg. geom. conjectures (Tate, Hodge):

CONJECTURE (TAME FM). If S is away from p, then any representation $G_S \to \text{GL}_n(\mathbb{Z}_p)$ has finite image, i.e. G_S has no infinite p-adic analytic quotient.

More generally,

CONJECTURE (Boston). If S is away from p, and Λ is a complete local Noetherian ring with residue field of characteristic p, then any representation $G_S \to \text{GL}_n(\Lambda)$ has finite image.

Some cases of this have been verified by Boston.
III. Shallow Ramification: A Variant on Tame

- S a finite set of places of K

- $\nu : S \rightarrow \mathbb{R}$ an arbitrary indexing map

Let $K_{S,\nu}$ be the compositum of all finite p-extensions L/K such that every higher ramification group $D^{\nu p}(L/K, p)$ is trivial (for all $p \in S$). (Ramification groups in the upper numbering behave well under quotients). The ramification in $K_{S,\nu}/K$ is “shallow,” because the “depth” of ramification (terminology due to Coates-Greenberg) is bounded by the indexing function ν.

Let $G_{S,\nu} = \text{Gal}(K_{S,\nu}/K)$. Thus, $G_{S,\nu}$ = the quotient of G_S by the closed normal subgroup generated by all higher ramification groups $D^{\nu p}(K_S/K, p)$ as p runs over S.
Since \(p \) is tamely ramified in \(L \) if and only if \(D^1(L/K, p) \) vanishes, \(G_S = G_{S,\nu} \) in the case where \(S \) contains no primes of residue characteristic \(p \).

We know very little about \(G_{S,\nu} \). For instance,

Problem. Give an upper bound for the partial Euler characteristic \(r(G_{S,\nu}) - d(G_{S,\nu}) \).

Our general philosophy is that **shallow ramification is just like tame ramification**. In particular, we expect

CONJECTURE (SHALLOW FM). If \(\nu \) is finite, then every representation \(\rho : G_{S,\nu} \to \text{GL}_n(\mathbb{Z}_p) \) has finite image.

In fact,

TAME FM \Rightarrow SHALLOW FM
by the following generalization of Grothendieck’s theorem:

THEOREM. If $\rho : G_K \to \text{GL}_n(\mathbb{Z}_p)$ has shallow ramification, i.e. factors through some $G_{S,\nu}$, then ρ is everywhere potentially semistable.

Idea of proof: By a theorem of Sen, in a p-adic analytic totally ramified extension of p-adic fields, the filtration by higher ramification groups is intertwined with the p-adic Lie filtration. Therefore, if the depth of ramification is bounded, the inertia group is finite. Applying this to each prime of residue characteristic p in S, we find that ρ is potentially tamely ramified, then appeal to Grothendieck.

IV. Root Discriminants

We can characterize shallow vs. deeply ramified extensions in terms of root discriminants as follows.
Root Discriminant $rd_K = |d_K|^{1/n}$ where

$$n = [K : \mathbb{Q}], \quad d_K = \text{discriminant of } K.$$

If L/K is an infinite algebraic extension, we say L/K is **asymptotically bad** if there is a sequence of number fields $K \subset K_1 \subset K_2 \subset \cdots \subset L$ with $rd_{K_i} \to \infty$. Otherwise, we say L/K is **asymptotically good**. The traditional example of an asymptotically good tower is an unramified one, where the root discriminant is constant.

PROPOSITION. An extension (unramified outside a finite set) with shallow ramification is asymptotically good. Indeed, if $m = [K : \mathbb{Q}]$, and $K \subseteq L \subseteq K_{S,\nu}$, then

$$rd_L \leq rd_K \prod_{p \in S} N_{K/\mathbb{Q}}(p)^{(\nu_p+1)/m}.$$

If L/K is deeply ramified, then it is asymptotically bad.
The extension of Grothendieck’s theorem from tame to shallow ramification has the following consequence.

THEOREM. Conjecture TAME FM is equivalent to the following statement:

If L/K has infinite p-adic analytic Galois group, then L/K is asymptotically bad.

Proof: Assume TAME FM. If L/K is ramified at infinitely many primes, then L/K is automatically asymptotically bad. If L/K is ramified at finitely many primes, then by TAME FM, it must be deeply ramified hence bad. On the other hand, supposing every infinite p-adic analytic extension of K is bad, and knowing that an infinite tame extension unramified outside a finite set is asymptotically good, we would conclude that K admits no infinite analytic tame extension unramified outside a finite set of primes.