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Introduction

These notes are based on a series of lectures given at the TataInstitute
in January-February, 1973. The lectures are centered aboutthe work of
M. Scahlessinger and R. Elkik on infinitesimal deformations. In gen-
eral, letX be a flat scheme over a local Artin ringR with residue field
k. Then one may regardX as an infinitesimal deformation of the closed
fiber x0 = X ×

Spec(R)
Spec(k). Schlessinger’s main result proven in part

(for more information see his Harvard Ph.D. thesis) is the construction,
under certian hypotheses, of a “versal deforamtion space” for X0. He
shows that∃ a completelocal k-algebraA = lim A/mn

A and a sequence
of deformationsXn over Spec(A/mn

A) such that the formalA-prescheme
X = lim−−→Xn is versal in this sense: For all Artin local ringsR, every de-
formationS/S pec(R) of X0 may be obtained from some homomorphism
A→ Rby settingX =X ×

Spec(A)
Spec(R).

Note that by “versal deformation” we do not mean that there isin
fact a deformation ofX0 over A. The versal deforamtion is given only
as a formal scheme. However, Elkik has proven (cf. “Algebrisation
du module formel d’une singularite isolée” Séminaire, E.N.S., 1971-72)
that such a deformation ofX0 overA does exist whenX0 is a affine and
has isolated singularities. We give a proof of this result inthese lectures.

Finally, some of the work of M. Schaps, A. Iarrobino, and H. Pin-
kham is considered here. We prove schaps’s result that everyCohen-
Macaulay affine scheme of pure codimension 2 is determinantal. More-
over, we outline the proof of her result that every unmixed Cohen-
Macaulay scheme of codimension 2 in an affine space of dimension
< 6 has nonsingular deformations. For more details see her Harvard

iii



iv Introduction

Ph. D. thesis, “Deforamtions of Cohen-Macaulay schemes of codimen-
sion 2 and non-singular deformation of space curves”. We also repro-
duce Iarrobino’s counterexample (cf. “Reducibility of thefamilies of 0-
dimensional schemes on a variety”, University of Texas, 1970) that not
every 0-dimensional projective scheme (inP for n > 2) has a smooth de-
formation. Finally, we give some of Pinkham’s results on deformations
of cones over rational curves (cf. his Harvard Ph.D. thesis,“Deforma-
tions of algebraic varieties withGm action).

There is of course much more literature in this subject. Two pa-
pers relevant to these notes are Mumford’s “Pathologies-IV” (Amer. J.
Math., Vol. XCVII, p. 847-849) in which expanding on Iarrobino’s
methods he proves that not every 1-dimensional scheme has nonsin-
gular deformations, and M. Artin’s “Versal deformations and algebraic
stacks” (Inventions mathematicae, vol. 27, 1974), in whichis shown
that formal versality is an open condition.

Thanks are due to the Institute for Advanced study for providing
excellent facilities in getting this manuscript typed.
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Deformations of Singularities

Part 1

Formal Theory and
Computations

1 Definition of deformations
1

We work over an algebraically closed fieldk.
Let X be an affine scheme,X ֒→ An. Let A be finite (i.e., finite-

dimensional/k) local algebra overk, so thatA ≈ k[t1, . . . , tr ]/a with√
a = (t1, . . . , tr). Let T = SpecA.

Definition 1.1. An infinitesimal deformation XT(or XA) of X is a scheme
flat/T together with ak-isomorphismXT ×T Speck

∼−→ X.

More generally, suppose we are given a commutative diagram

X

��

� � // X̄

flat
��

Speck // SpecR

whereR is a ring of finite type overk and X is a scheme with closed
fiber isomorphic toX. We then say thatX is afamily of deformationsor
adeformationof X overR.

Remark 1.1.XT is necessarily affine. In fact∃ a closed immersion
XT ֒→ An

T(= SpecA[X1, . . . ,Xn]) such that its base change with respect

1



2 1. Formal Theory and Computations

to the morphism Speck→ T (representing the closed point of SpecA is
the immersionX ֒→ An(= An

k).

Let O = coordinate ring ofX andO = k[X1, . . . ,Xn]/I , with xi the
canonical images ofXi in O. To prove the remark, it suffices to prove2

that if XA ֒→ An
A is an affine scheme (overA) imbedded inAn

A,A
′ is a

finite local algebra/k such that

0→ J→ A′ → A→ 0 is exact

with J2 = 0 (J is an ideal of square 0) andXA′ is a scheme/A′ such that
XA′ ×SpecA′ SpecA ≃ XA, then the immersionXA ֒→ An

A can be lifted
to an immersionXA′ ֒→ An

A′. (This reduction is immediate since the

maximal ideal is nilpotent. Say thatmρ

A′ = 0, and takeJ = mρ−1
A′ , . . .).

We have an exact sequence

0→ I → OXA′ → OXA → 0,

whereOXA′ , denotes the structure sheaf ofXA′ . Now I2 = 0 sinceJ2 = 0.
This implies thatI , which is a priori a (sheaf of)OXA′ module(s), is
in fact a module overOXA′/I , i.e., it acquires a canonical structure of
coherentOXA -module. SinceXA is affine, it follows thatH1(XA′ , I ) = 0
(for it is = H1(XA, I )). Hence

0→ Ho(XA′ , I )→ Ho(XA′ ,XA′)→ Ho(X,XA)→ 0

is exact, i.e., in particularHo(XA′ ,OXA′ ) → Ho(X,OXA) → 0 is exact.
Let xi be the coordinate functions onXA which defineXA ֒→ An

A. The
xi can be lifted toξi ∈ Ho(XA′ ,OXA′ ). Then theξi define a morphism
ξ : XA′ → An

A′ . It follows at first thatξ is a local immersion; for this
it suffices to prove thatξ1 generate the local ringOXA′,x at every closed3

point x of XA′. Let Ix be the stalk of the ideal sheafI at a closed point
x of X. We have 0→ Ix → OA′,x → OA,x → 0(OA′,x′OA,x represent the
local rings atx of XA′ andXA respectively). We haveIx = J ·OA′,x· . Now
j ·θ1 = j ·θ2 for j ∈ J andθ1, θ2 in OA′,x such that their canonical images
in OA,x are the same. LetS be the subalgebra ofOA′,x generated byξi

overA′. Then we see thatIx = JS. SinceJ ⊂ A′ it follows that Ix ⊂ S.



1. Definition of deformations 3

SinceS maps ontoOA,x′ givenλ ∈ OA′,x·∃s ∈ S such thatλ − s ∈ Ix.
This implies thatλ ∈ S. This provesS = OA,x·. We conclude then that
ξ : XA′ ֒→ An

A′ is a local immersion. Butξ is a properinjectivemap
(sinceXA ֒→n

A is a closed immersion). From this it follows thatξ is a
closed immersion. This proves the Remark.

Note that in the above proof we havenot used the factthat XA′ is
flat/A′.

Given the closed subschemeX ֒→ An
k let us define the following

two functors on the category of finite local algebras overk.

(Def. X) : (Finite local alg)→ (Sets)
| |

{Deformations ofX/A}7→{isom. classes (overA) of schemesX flat/A
and suct thatXA ⊗ k ≃ X}

(Emb. def.X):(Finite local alg)→(Sets)
{Embedded deformations/A 7→ closed subschemesXA of An

A flat/A,
such thatXA ֒→ An

A by base change is the givenXA ֒→ An
k}

These should be called respectivelyinfinitesimal deformationsof X 4

andinfinitesimal embedded deformationsof X. Then we have a canoni-
cal morphism of functors

(Emb.de f.X)
f
−→ (De f.X).

The above Remark says thatf is formally smooth; that is, if A′ →
A→ 0 is exact in (Finite local alg), we have

(Emb.de f.X)(A′)

��

// (De f.X)(A′)

��
(Emb.de f.X)(A′) // (De f.X)(A)

(by definition of a morphism of functors), and the canonial map

(Emb.de f.X)(A′)→ (De f.X)(A′) ×(de f.X)(A) (Emb.de f.X)(A)

is surjective.



4 1. Formal Theory and Computations

2 Iarrobino’s example of a 0-dimensional scheme
which is not a specialization ofd distinct points

GivenX as above, we can ask whether it can be “deformed” into a non-
singular scheme. Here by adeformationwe do not mean an infinitesimal
one, but a general family of deformations. Let us consider the simplest
case of Krull dimension 0. ThenX = SpecO whereO is a k-algebra of
finite dimensiond. If d = 1,O ≈ k. If d = 2,O ≈ k× k or O ≈ k[t]/(t2).
If d = 3, we have

O =


k3 or k× k[t]/t2

or k[t]/t3 or k[X,Y]/(X,Y)2

In our particular case the question is whetherX can be deformed5

into d distinct points ofAn. Now An ֒→ P
n and we see easily that

this deformation implies a “deformation” of closed subschemes ofPn,
i.e., if X can be deformed intod “distinct points” we see (without much
difficulty) that this can be done as an “embedded deformation” inA

n and
in fact as an embedded deformation inPn. Let Hilbd denote the Hilbert
scheme of 0-dimensional subschemesZ ֒→ Pn such that ifZ = SpecB
thenB is of dim d over k. Then it is known that Hilbd is projective/k.
Let Ud denote theopensub-scheme of Hilbd corresponding tod distinct
points, i.e., those closed sub-schemes ofPn corresponding to points of
Hilbd which are smooth. We see thatUd is irreducible; in fact it is
d-fold symmetric product ofPn minus the “diagonals”. Now if every
0-dimensional subscheme can be deformed into a nonsingularone, then
Ud is dense in Hilbd and it follow thatHilbd is irreducible.

We shall now give the counterexample (due to Iarrobino) where
Hilbd isnot irreducible. It follows therefore that a 0-dimensional scheme
cannot in general be deformed to a smooth one.

Theorem 2.1. Let Hilbd,n denote the Hilbert scheme of closed0-dimen-
sional subschemes ofPn of length d. Then Hilbd,n is irreducible for
n ≤ 2. For n > 2,Hilbd,n is not in generalirreducible.

Proof. We give only the counter example for the casen > 2. LetO
′
=

k[X1, . . . ,Xn]/(X1, . . . ,Xn)r+1. Let I be the ideal in (X)r/(X)r+1 (where



2. Iarrobino’s example of a 0-dimensional scheme... 5

(X) = (X1, . . . ,Xn)). ThenI is a vector space overk and

Rank of I/k = Polynomial of degree (n− 1) in r

Rank of O
′/k = Polynomial of degree n in r.

� 6

Now I is an ideal inO′ and in particular anO′ module. More-
over, if λ ∈ max ideal ofO′ thenλ · I = 0. HenceO′ operated onI
through its residue field. In particular, it follows thatany linear sub-
space (overk) of I is an ideal inO′ and hence defines a closed sub-
scheme of SpecO′. Take nowθ = 1

2 Rank I or 1
2 Rank I − 1

2 accord-
ing as RankI is even or odd andd = Rank(O′/V), whereV is a sub-
space ofI of rank θ. Henceθ = Polynomial of degree(n − 1) in r and
d = polynomial of degreen in r. Let us now count the dimension of the
setLθ of all linear subspaces ofI of rank= θ. Then it is a Grassmannian

anddimLθ =
(

1
2 RankI

)2
or

(
1
2 RankI − 1

2

) (
1
2 RankI + 1

2

)
according as

RankI is even or odd=(Polynomial ofdeg n− 1)2 in r = Polynomial of
degree(2n− 2) in r. Now if Ud is the subscheme of Hilbd of “d distinct
points” as above, then

dimUd = d.n = n(Polynomial of degree n in r).

Now if r ≫ 0, we see that

dimLθ > dimUd.

SinceLθ can be identified as a subscheme of Hilbd, it follows now
that Ud is not dense in Hilbd. To see thatLθ is a subscheme ofHilbd,
note that SpecO/I as a point set consists only of one point. The family
of subschemes ofPn parametrized byLθ as a point given by (xo× Lθ). It
suffices to check that on (x×Lθ), we have a natural structure of a scheme
Γ such that
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Γ is a closed subscheme ofPn × Lθ and p−1(x) is the subscheme of
SpecO/I defined by the linear subspace ofI corresponding tox. Then 7

we see thatp : Γ → Lθ is flat, for p is a finite morphism overLθ such
thatOΓ is a sheaf ofOLθ -algebras; in particular,OΓ becomes a coherent
sheaf overOLθ . At every x ∈ Lθ, for OΓ ⊗ OLθ , x/maxideal(= OΓ ⊗ k),
the rank is the same.Lθ is reduced, this implies thatOΓ is locally free
overOLθ . In particular,Γ is flat/Lθ.

3 Meaning of flatness in terms of relations

A moduleM over a ringA is said to beflat if the functorN 7→ M⊗A is
exact.

⇔ TorAq (M,N) = 0 ∀N/A.

⇔ TorAl (M,N) = 0 ∀finitely generatedN/A.

Let us now consider the case whenA is a finitelocal k-algebra. Then
if N is anA-module of finite type, there is a composition series

N = N0 ⊃ N1 ⊃ . . . ⊃ Nℓ = 0, such that Ni/Ni + 1 ≈ k.

From this it follows immediately that

M f lat/A⇔ Tor1(M, k) = 0 (if A finite localalg/k).

Let XA = SpecOA, A finite local algebraandOA an A-algebra of
Iinite typeso that we have

0→ IA→ PA→ OA→ 0

exact withPAA[X](X = (X1, . . . ,Xn)). Tensor this withk. Then we have

o→ Tor1(OA, k)→ IA ⊗ k→ Pk → Ok → 0

8



3. Meaning of flatness in terms of relations 7

Let X = SpecOk, X ≈ XA ⊗ k, I ideal ofX in An. Then

XAis flat/A⇔ Tor1(OA, k) = 0,

⇔ IA ⊗ k = I .

Take a presentation for the idealIA in PA, i.e., an exact sequence

(*)

PℓA
// Pm

A
//

��?
??

??
??

?
PA

// OA
// 0

IA

??��������

  A
AA

AA
AA

A

0

>>}}}}}}}}
0

Then we have (because of the above facts): OA is A-flat⇔ the above
presentation for IA tensored byk, gives a presentation for I, i.e., ten-
sored by k gives again an exact sequence

(**)

Pℓk
// Pm

k
//

��>
>>

>>
>>

>
Pk

// O // 0

I

@@��������

��?
??

??
??

?

0

>>~~~~~~~~
0

Suppose we are given:
O = K[X]/( f1, . . . , fm) and liftings (f ′i ) of ( fi) to elements inA[X].

Let I = ( f1, . . . , fm), IA = ( f ′1, . . . , f ′m) and OA = A[X]( f ′1, . . . , f ′m).
These data are equivalent to giving a liftingPm

A → PA → OA → 0 of
the exact sequencePm→ P→ O → 0, i.e., to giving anexact sequence
Pm

A → PA → OA → 0 such that its⊗Ak is the given exact sequence9
Pm → P → O → 0. Note that this need not imply that IA ⊗ k = I if
IA = Ker(PA→ OA) and I = Ker(P→ O).

Suppose we are now given a “complete set of relations” (or a pre-
sentation forI ) betweenfi ’s, i.e., anexact sequence

(*) Pℓ → Pm→ P→ O → 0.
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Thengiving a lifting of these relationsto that of f
′
i ’s (or IA) is to

give

(**) PℓA→ Pm
A → PA→ OA→ 0

which extends the exact sequencePm
A → PA → OA → 0, which is a

complexat Pm
A, i.e., ImPℓA ⊂ Ker(Pm

A → PA) and such that (∗∗) lifts (∗).
In this situation we have the following

Proposition 3.1. Suppose

(*) Pℓ → Pm→ P→ O → 0

is exactand

(**) PℓA→ Pm
A → PA→ OA→ 0

is acomplexsuch that the part

Pm
A → PA→ OA→ 0

is exact and (**)⊗Ak = (∗). ThenOA is A-flat.

Proof. Suppose first that

(*) PℓA→ Pm
A → PA→ OA→ 0

is exact not merely a “complex atPm11
A . Then we claim that the flatness10

of OA overA follows easily. For then (**) can be split up as:

PℓA→LA→ 0, 0→ LA→ Pm
A → IA→ 0

0→ IA→ PA→ OA→ 0

 exact.

ThereforePℓA ⊗ k → LA ⊗ k → 0 andLA ⊗ k → Pm
A ⊗ k → 0 are

exact. This implies thatIA⊗k = coker(k⊗PℓA→ k⊗Pm
A)m i.e., cokernel

is pre-served byk⊗A. On the other hand,I = Coker(Pℓ → Pm). Hence
IA⊗ k = I . From this it follow thatOA is flat/A as remarked before. Now
the hypotheses of our proposition amount to the fact all relations inI can
be lifted toIA. Given a relation inIA, i.e., anm-tuple (λ′1, . . . , λ

′
m) such
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that
∑
λ′i f ′i = 0, this descends to a relation in 1 by taking the canonical

images ofλ
′
i in P. Take a complete set of relations forIA, i.e., an exact

sequence

(i) Pℓ
′

A → Pm
A → PA→ OA→ 0 (ℓ

′
need not be ℓ),

then from our above argument this descends to a complete set of rela-
tions for I , i.e., tensoring (i) byk we get an exact sequence

Pℓ
′
→ Pm→ P→ O → 0.

Consequently, we have already shown in this situation that we must
haveOA to be A-flat. �

The criterion for flatness can given be formulated as follows:

Corollary . Let O = k[X]/( f1, . . . , fm) and OA = A[X]/( f
′
1, . . . , f

′
m) 11

where f
′
i are liftings of fi . ThenOA is A-flat⇔ every relation among

( f1, . . . , fm) lifts to a relation among( f
′
1, . . . , f

′
m).

Remark 3.1. It is seen immediately that

OAflat/A⇒ IAflat/A.

For, the exact sequence 0→ IA → PA→ OA→ 0 by tensoring byk
gives

0
‖

0
‖

0
‖

Tor2(OA, k) // Tor1(IA, k) // Tor1(PA, k) // Tor1(OA, k) // 1 // Pk
// O // 0

This implies that Tor1(IA, k) = 0, hence thatIA is flat/A, by a previous
Remark. Repeating the procedure forOA, we see by succesive reasoning
that anyresolutionfor O lifts to one forOA.

4 Deformations of complete intersections

Let X ֒→ An be a complete intersection. Letd = dimX (Krull dim)
and I = ( f1, . . . , fn−d) the ideal ofX. Let O = P/I , whereP = Pk =
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k[X1, . . . ,Xn] Then it is well known that the “Koszul complex” gives a
resolution forO, i.e.,

2
∧Pn−d →

1
∧Pn−d(= Pn−d)→ P→ O → 0

the homomorphisms being interior multiplication by the vector12

( f1, . . . , fn−d) ∈ Pn−d,

(e.g., Pn−d → P is the map (λ1, . . . , λn−d) 7→ ∑
i λi fi). The image of

2
∧Pn−d in Pn−d gives the realtions inI , which shows that the relations
among thefi are (generated by) the obvious ones, i.e.,fizj − f jzi = 0.

Let A = k[t]/(t2) (which we write A= k + kt with t2 = 0). Then
deformations of X over A are called first order deformations. Lert IA be
the ideal inA[X1, . . . ,Xn].

IA = (( f1 + g1t), . . . , ( fn−d + gn−dt))

wheregi ∈ Pk. We claim that for arbitrary choice of gi ∈ Pk,OA =

PA/IA is flat over A (of course we have seen that any deformationXA

of X can be defined byIA for sutiable choice ofgi). This is an immedi-
ate consequence of the fact that aboveexplicit relationsbetweenfi can
obviously be lifted to relations between (fi +gi t). This proves the claim.

Thus to classify embedded first order deformations it suffices to
write down conditions on (gi ), (g

′
i ) in P so that inPA the ideals ((fi+gi t))

and ((fi + g
′
i t)) are the same.We claim:

(( fi + gi t)) = (( fi + g
′
i t))⇔ gi − g

′
i ∈ I .

To prove this we proceed as follows:

(( fi + g
′
i t)) ⊂ (( fi + gi t))⇔ (Set r = n− d.)

fi + g
′
i t =

n−d∑

j=1

(αi j + βi j t)( f j + g j t)

=


r∑

j=1

αi j f j

 + t


r∑

j=1

αi j g j +

r∑

j=1

βi j f j

⇔

∃ (r × r) matrices (αi j ) and (βi j ) with coefficients inP such that13



4. Deformations of complete intersections 11

(a) (αi j )



f1
...

fr


=



f1
...

fr


, i.e.,(αi j − Id)

f1

(
...)
fr
= (0), and

(b) (αi j )



g1
...

gr


+ (βi j )



f1
...

fr


=



g
′
1
...

g
′
r


.

Since the coordinates of the relation vectors are inI it follows from
(a) above that the element of (αi j − Id) are inI , i.e., (a) ⇒ (αi j ) ≡ (Id)
mod I ). Then (b) implies that



g1
...

gr


≡



g
′
1
...

g
′
r


(modI ).

Hence ((fi + g
′
i )) ⊂ (( fi + gi t) ⇒ (gi − g

′
i ) ∈ I . Hence ((fi + gi t)) =

(( fi + g
′
i t))⇒ (gi − g

′
i ) ∈ I . Conversely, suppose that (gi − g

′
i ) ∈ I . Then

there is a matrix (βi j ) such that

(βi j



f1
...

fr


=



g
′
1
...

g
′
r


−



g1
...

gr



Hence, (Id)



g1
...

gr


+ (βi j )



f1
...

fr


=



g
′
1
...

g
′
r .



Taking (αi j ) = Id we see that the conditions (a), (b) are satisfied,
which implies that ((fi + gi t)) = (( fi + g

′
i t)). This proves the claim and

thus we have classifiedall embedded(in An) first order deformations of 14

X.
Now to classify first order deformations ofX we have only to write

down the condition when two embedded deformationsXA,X′A are iso-

morphic overA. Let θ be an isomorphismXA
∼−→ X

′
A. By assumption,

X ⊗ k = X
′
A ⊗ k = X. i.e., their fibres over the closed point of SpecA are
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X ⊂ An. We denote (of course) byXν the canonical coordinate functions
of XA ֒→ An

A = SpecA[X1, . . . ,Xn]. Let X
′
ν = θ

⋆(Xν). Then we have

X
′
ν = Xν + ϕν(X)t

for some polynomialsϕν(X). Hence to identify two embedded deforma-
tions ofX we have to consider the identification by the above change of
coordinates. Then

fi + gi t 7→ fi(Xν + ϕν(t)) + gi((Xν + ϕν(t))t.

By Taylor expansion up to the first order, we get

= fi(X) + t


∑

ν

∂ fi
∂X

ϕν(X)

 + tgi(X)

= fi(X) + t

gi(X) +
n∑

ν=1

∂ fi
∂X

ϕν(X)



Hence (fi +gi t) and (fi +g
′
i t) define the same deformation of the first

order up to change of coordinates above, which is equivalentto the fact
that there exists (ϕ1, . . . , ϕn) such that

(*)



g1
...

gr


−



g
′
1
...

g
′
r


=



∂ f1
∂X1
· · · ∂ f1

∂Xn

· · ·
∂ fr
∂X1
· · · ∂ fr

∂Xn





ϕ1
...

ϕn


.

15

Recall thatO = P/I andX = SpecO. Then embedded first order
deformatios are classified byOn−d = O ⊕ . . . ⊕ O (n− d times), which
is anO-module.

To classified all deformations, consider the homomorphism of P
modules

O
Jac→O

n−d whose matrix is

(
∂ fi
∂X j

)
;
∂ fi
∂X j

the images of
∂ fi
∂X j

in P/I .

Let us call the euotientOn−d/ImOn by this mapT. This is anO-
module and we see that its support is located at the singular points of
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X. In particular, ifX has isolated singularities,T is a finite dimensional
vector space/k.

For example, consider the case thatX is of codimension one, i.e.,
defined by one equationf . Then

T = k[X]/

(
f ,
∂ f
∂X1

, . . . ,
∂ f
∂Xn

)
.

The cone in 3-space has equationf = Z2 − XY, and if chark, 2,

T = k[X,Y,Z]/( f ,−Y,−X, 2Z) � k.

Thus auniversalfirst order deformation is given by

Z2 − XY+ t = 0.

5 The case of Cohen-Macaulay varieties of codim 2
in An (Hilbert, schaps)

16
The theorem that we shall prove now was essentially found by Hilbert.
This has been studied recently by Mary schaps.

Let P be as usual the polynomial ringP = k[X1, . . . ,Xn]. Let (gi j )
be an (r × r − 1) matrix overP[

g11 · · ·gr−1

gr,1 · · · gr,r−1

]
. Let δi = (−1)idet((r − 1)× (r − 1) minor with ith row

deleted).

Then (δ1, . . . , δr )

[
g1,1 · · · g1,r−1

gr,1 · · · gr,r−1

] [
g1,1 · · · g1,r−1, g1,1

gr,1 · · ·gr,r−1, gr,1

]
= 0 etc. This

implies that the sequence

Pr−1 −−−→
(gi j )

Pr −−−−−−→
(δ1,...,δr )

P

is acomplex. Note thatPr−1 → Pr is injective if over the quotient field
of P. (gi j ) has rnak (r − 1), or equivalently,∃ somexo ∈ An such that
(gi j (xo)) is of rank (r − 1).
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Theorem 5.1(Hilbert, Schaps). (1) Let(gi j ) be an r×(r−1) matrix over
P andδi its minors as defined above. Let J be the ideal(δ1, . . . , δr ).
Assume that V(J) = V(δ1, . . . , δr ) is of codim≥ 2 in An. Then
X = V(J) is Cohen-Macaulay, precisely of codim2 in An. Further,
the sequence

0→ Pr−1 (gi j )−−−→ Pr (δ1,...,δr )−−−−−−→ P→ P/J→ 0

is exact, i.e., it gives resolution for P/J.17

(2) Conversely, suppose given a Cohen-Macaulay closed subscheme
X ֒→ An of codim2. Let X = V/(J), then P/J has a resolution

of length 3 which will be of the form0 → Pr−1
(gi j )−−−→ Pr ( f1,..., fr )−−−−−−→

P → P/J → 0, because hdPP/J = 2. (Depth P/J + hdpP/J = n,
depth P/J = n − 2,⇒ hgP/J = 2). Note that fi need not beδi as
defined above. Then we claim that we have as isomorphism

0 // Pr−1
(gi j ) // Pr

( f1,..., fr )// P

≀

0 // Pr−1
(gi j ) // Pr(δ1,...,δr )// P

i.e.,∃ a unit u∈ P such that fi = uδi .

(3) The map of functors (Deformations of(gi j ))→ (Def X) is smooth,
i.e., -(i) deforming(gi j ) gives a deformation of X, (ii) any deforma-
tion of X can be obtained by deforming gi j , and (iii) given a deform-
tion XA of X defined by(gi j ) over A[X], A′ → A → 0 exact and
a deformation XA of X inducing XA,∃(g

′
i j ) over A′[X] which defines

XA and the canonical image of(g′i j ) in A is (gi j ).

Proof. (1) Let (gi j ), δi , etc., be as in (l). We shall first prove that

0→ Pr−1 (gi j )−−−→ Pr (δi )−−→ P→ P/J→ 0

is exact, assuming codimX ≥ 2. This will complete the proof of (l).
For, it follows hdPP/J < 2. On the other hand, since codimX ≥ 2,
depthP/J ≤ (n− 2).
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But depthP/J + hdPP/J = n. This implies that dimP/J = depth18

P/J = (n − 2) andhdPP/J = 2, which shows thatX is Cohen-
Macaulay of codim 2 inAn.

SinceV(J) , An, the δi ’s are notall identically 0, hence 0→
Pr−1 → Pr is exact. Further we note that anyxo < V(J), (gi j (xo))
is of rank (r − 1) and in fact one of (δ1, . . . , δr ) is nonzero atxo and
hence aunit locally at xo. This implies thatPr−1 → Pr → P split
exactlocally atxo (i.e., if B is the local ring ofAn at xo, then tensor-
ing by B gives a split exact sequence). Because of our hypothesis
that codimV(J) ≥ 2, if x is a point ofAn represented by a prime
ideal of height one andB its local ring. then tensoring byB makes
Pr−1 → Pr → P exact (i.e., the sequence is exact in codim 1). Let
K = Ker(Pr → P). We haveK ⊂ Pr such that 0→ Pr−1 → K,
and 0→ K → Pr → P exact. Tensoring byB as above, it follows
that Pr−1 ⊗ B → K ⊗ B is an isomorphism (tensoring byB is a lo-
calization); i.e., the inclusionPr−1 ⊂ K is in fact an isomorphism in
codim 1. SincePr−1 is free sections ofPr−1 defined in codimension
1 exrtend to global sections. Moreover,K is torsion-free. Therefore,
the fact thatPr−1 ⊂ K is an isomorphism in codimension 1 implies
that it is anisomorphism everywhere. Therefore,Pr−1→ Pr → P is
exact, and this completes the proof of (1).

(2) Let I = ( f1, . . . , fr) be a Cohen-Macaulay codim 2 ideal inP. Since
hdPP/I = 2, there is a resolution

(*) 0 → Pr−1 (gi j )−−−→ Pr ( fl ,..., fr )−−−−−−→ P→ P/I → 0.

(Here we should take the warning about using free resolutions in-
stead of using projective resolutions.) Let the complex (**) be de-
fined by

(**) 0 → Pr−1 (gi j )−−−→ Pr (δ1 ...,δr )−−−−−−→ P→ P/J→ 0

δi being as before. 19

The sequence (*) is split exact at every pointx < V(I ). This implies
that someδi is a unit atx, and hence by direct calculation that (**)
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is also split exact, andP/J = 0, atx. This means

V(J) ⊆ V(I ),

hence codimV(J) ≥ 2. Hence by (l) it follows that (**) is exact.

We shall now show that∃ a unitu such thatfi = uδi . Take the dual
of (*) and (**) dual: HomP(M,P) = M∗), i.e.,

(Pr−1)∗ ←−−−
(gi j )t

(Pr)∗ ←−−−
( f )t

P∗ ← 0(∗)∗

(Pr−1)∗ ←−−−
(gi j )t

(Pr)∗ ←−−−
(δi )t

P∗ ← 0.(∗∗)∗

We claim that these sequences areexact. The required assertion
about the existence ofu is an immediate consequence of this. For

then P∗
( f )∗
−−−→ (P∗)r and P∗

(δi )∗−−−→ (P∗)r are injective maps into the
same submodule of (P∗)r of rank 1 which implies that (f ) and (δ)

differ by a unit. We note thatPr−1
(gi j )−−−→ Pr ( f1,..., fr )−−−−−−→ P andPr−1 →

Pr (δ1,...δr )−−−−−−→ P are split exact in codimension 1. Consequently. it
follows from this and the fact that HomP(P/I ,P) = HomP(P/J,P) =
0 that we have sequences

0→ P∗
( fi )t

−−−→ Pr∗ (gi j )t

−−−→ Pr−1∗

0→ P∗
(δi )∗−−−→ Prt (gi j )t

−−−→ Pr−1∗

and we must prove exactness at thePr∗ module. But we have20

that Im f∗i ⊂ Ker(gi j )t and Im(δi)∗ ⊂ Ker(gi j )t with equality at
the localization of each prime ideal of height 1. Consequently,
Im f∗i = Ker(gi j )t, Im(δi)t = Ker(gi j )t (same argument as was used
above). This completes the proof of (2).

(3) Let A be an Artin local ring overk, andPA = A[X1, . . . ,Xn]. Let
(g
′
i j ) be anr × (r − 1) matrix overPA and (gi j ) the matrix overP

such thatg′i j 7→ gi j by the canonical homomorphismA[X] → k[X].

Defineδ
′
i analogous toδi . Suppose that codimV(δ

′
i ) in An

A is of
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codim≥ 2⇔ codimV(δi) in An
k is of codim≥ 2⇔ condimV(δi) =

2 because of (1). Consider

0→ Pr−1
A

(g
′
i j )−−−→ Pr

A

(δ
′
i )−−−→ PA→ PA/IA→ 0(**)

0→ Pr−1 (gi j )−−−→ Pr (δi )−−→ P→ P/I → 0.(*)

Now (**) is lifting of (*). Of course (*) is exact andPr
A → PA →

PA/JA → 0 is exact. Besides, (**) is a complex. This implies by
proposition 3.1 thatPr−1

A → Pr
A → PA → PA/JA → 0 is exact

andPA/IA is A-flat and by Remark 3.1 (**) is exact/ (The exactness
of (**) can also be proved by a direct argument generalizing (1).)
This shows that any (infinitesimal) deformation (g

′
i j ) of (gi j ) as in

(1) gives a (flat) deformationXA of X = SpecP/I and thatXA is
“presented” in the same way asX.

Conversely, letXA be an infinitesimal deformation ofX = V(δ1, . . . , 21

δr ). Lift the generators forI to IA say (fl , . . . , fr). Then as we re-
marked before the exact sequence (*) can be lifted to anexact se-
quence

(∗∗)′ 0→ Pr−1
A

(g
′
i j )−−−→ Pr

A

( fi )−−→ PA→ PA/IA→ 0

[Note that fi need not be (a priori) the determinants of minors of
(g
′
i j ).] Let δ

′
i be the minors of (g′i j ), JA the ideal (δ

′

l , . . . δ
′
r ). Then as

we saw above

(**) 0 → Pr−1
A

(g
′
i j )−−−→ Pr

A

(δ
′
i )−−−→ PA→ PA/JA→ 0

is exactandPA/JA is A-flat. Taking the duals of (**) and (∗∗)′ as
before, it follows that there is a unitu in PA such thatfi = uδ

′
i . This

shows thatIA = JA. Thus any deformation is obtained by a diagram
of type (**). The assertion of smoothness also follows from this
argument. This completes the proof of the theorem.

�
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Remark 5.1.Any Cohen-MacaulayX ֒→ An of codim 2 is defined by
the minors of anr × (r − 1) matrix (gi j ) (this is local, note the warning
about using free modules instead of projective ones). Thegi j ’s define a
morphism

A
n Φ−→ Ar(r−1).

Let Q = k[Xi j ], 1 ≤ i ≤ r, 1≤ j ≤ r−1, so thatAr(r−1) = Speck[Xi j ].
ThenΦ∗(Xi j ) = gi j . Consider (Xi j ) as anr × (r − 1) matrix overQ, and
let △i = (−1)i det(minor ofXi j with ith row deleted). Then the variety
V = V(△1, . . . ,△r)→ Ar(r−1) is called thegeneric determinantal variety22

defined byr × (r − 1) matrices. It is Cohen-Macaulay and of codim 2 in
A

r(r−1). ThenΦ−1(x) = X. This means that any Cohen-Macaulay codim
2 subscheme is obtained as the inverse image byA

n → Ar(r−1) of the
generic determinantal varietyV of typer × (r − 1).

Remark 5.2.Other simple examples of codim 2, Cohen-MacaulayX
are

(a) any O-dimensional subscheme inA2,

(b) any 1-dimensional reducedX in A3, and

(c) any normal 2-dimensionalX in A4.

More about the generic determinantal variety.
Now let X ⊂ Ar(r−1) denote the determinantal varietyV(△i) = V

defined above. Then any infinitesimal deformationXA of X is obtained
by the minors of a matrix (Xi j +mi j ) wheremi j ∈ mA[Xi j ], wheremA is
the maximal ideal ofA. SetX

′
i j = Xi j + mi j . We see thatXi j 7→ X

′
i j is

just change of coordinates inAn
A, i.e.,A[Xi j ] = A[X

′
i j ]. This implies that

X is rigid, i.e., every deformation ofX is trivial.

The singularity of X: X can be identified with the subset ofAr(r−1)

Homlinear(Ar ,Ar−1) of linear maps of rank≤ r − 2. NowG = GL(r) ×
GL(r−1) operates onAr(r−1) in a natural manner. LtXk denote the subset
of Ar(r−1) of linear maps of rank equal to (r − k). We note that Xk is an
orbit under Gand hence is a smooth, irreducible locally closed subset
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of Ar(r−1). To compute its dimension we proceed as follows: Ifϕ ∈
Hom(Ar ,Ar−1) andϕ ∈ Xk, thenimϕ is a k-dimensional space. Hence23

ϕ is determined by an arbitrary k-dimensional subspace ofA
r(= kerϕ)

an (r −k)-dimensional subspace ofA(r−1)(= Imϕ) and an arbitrary linear
map of an (r − k)-dimensional linear space onto an (r − k)-dimensional
linear space.

Hence

dimXk = (r − k)k + (r − k)[(r − 1)− (r − k)] + (r − k)2

= (r − k)k + (r − k)(k − 1)+ (r − k)2.

Supposek = 2, i.e., consider linear maps of rank (r − 2). ThenX2 is
obviously open inX and

dim X2 = (r − 2)2+ (r − 2)+ (r − s)2

= (r − 2)2+ 1+ (r − s)

= (r − 2)(r + 1)

It follows that codimX2 = 2.
It is clear thatX2 is dense inX (easily seen that everyxo ∈ X is a spe-

cialization of somex ∈ X2). The implies thatX is irreducible. Further
more,X2 is smooth, and in particular reduced. By the unmixedness the-
orem, sinceX is Cohen-Macaulay, it follows thatX is reduced. Hence
X is a subvariety ofAr(r−1).

Let X
′
3 = X3 ∪ X4 . . . be the set of all linear maps of rank≤ (r − 3).

ClearlyX
′
3 is a closed subset ofX. To compute dimX3, as we see easily

that x3 is a dense open set inX′3. Now

dimX3 = (r − 3)3+ (r − 3)2+ (r − 3)2 = (r − 3)(r + 2).

Hence codimX3 (in Ar(r−1))= 6, for r ≥ 3. (If r = 2 it is a complete
intersection;X is the intersection of two linear spaces and henceX is
smooth.)

Hence codim X3 in X is 4. We claim also that every point ofX
′
3 is 24

singular onX. To prove this, suppose for exampleθ ∈ X3. SinceG acts
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transitively onX3, we can assume it is the point

θ =



1 0 0
0 1 0 0
0 0 1

0 0



Then
∂△i

∂Xkl

∣∣∣∣∣
θ

= 0 ∀k, l. Thusθ ∈ X is smooth⇔ θ ∈ X2.

Thus the generic determinantal variety has an isolated singularity if
and only ifr = 3, in which case dimX = 4,X ⊆ A6(= Ar(r−1)). We thus
get an example of arigid isolated singularity(a 4-dimensional isolated
Cohen-Macaulay singularity).

Proposition 5.1. (Schaps). Let X0 ֒→ Ad(d ≤ 5) be of codim2 and
Cohen-Macaulay. Then X0 can be deformed into a smooth variety.

Proof. We give only an outline. SinceX0 is determinantal, it is obtained
as the inverse image ofX in Ar(r−1) by some map

ϕ = (gi j ) : Ad → Ar(r−1)

Now codimX in Ar(r−1) is 6. “Perturbing” (gi j ) to (g
′
i j ) = ϕ

′
, the map

A
d → Ar(r−1), defined by (g

′
i j ) can be made “transversal” toX. This

implies thatϕ
′
(Ad) ∩ SingX = ∅[SingX is of condim 6] and in fact that

ϕ
′−1

(X) is smooth. �

Remark 5.3. It has been proved by Svanes that ifX is the generic deter-25

minantal variety defined by determinants of (r × r) minors of an (m× n)
matrix, thenX is rigid, except for the casem= n = r.
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6 First order deformations of arbitrary X and Sche-
lessinger’sT1

Let X = V(I ) andA = k[t]/(t2). Let I = ( f1, . . . , fm). Fix a presentation
for I , i.e., an exact sequence

(*) Pℓ
(r i j )−−−→ Pm ( fi )−−→ P→ P/I → 0.

Let IA = ( f ′1, . . . , f ′m) where f
′
i = ( fi + tgi), gi ∈ P. ThenXA = V(IA) is

A-flat if if (*) lifts to an exact sequence

(**) PℓA
(r ′i j )−−−→ Pm

A

( f ′i )
−−−→ PA→ PA/IA → 0.

In fact we have seen (cf. Proposition 3.1) that in order that (**) be exact
it suffices that (**) be acomplexatPm

A, i.e.,XA = V(IA) is A-flat iff there
is a matrix (r′i j ) overPA extending (r i j ), such that

( f ′1, . . . , f ′m)

(
r′11 · · · r′11
r′m1 · · · r′m1

)
= 0

Setr
′
i j = r i j + tsi j , wheresi j ∈ P. ThenXA is A-flat iff exists(si j overP

such that the matrix product

( f + gt)(r + st) = f r + t(gr + f s) = 0

where f = ( fi), . . . , r = (r i j ). Now f r = 0 since (*) is exact. Thus26

the flatness ofXA over A is equivalent with the existence of a matrix is
s= (si j ) overP such that

(*) (gr) + ( f s) = 0.

Consider the homomorphism

(g) : Pm→ P

defined by (gi j ). Then condition (*) implies that (g) mapsImPℓ under
the homomorphism (r i j : Pℓ → Pm into the idealI . Hence (g) induces a
homomorphism

(g) : Pm/Im(r) = I → P/I ,



22 1. Formal Theory and Computations

i.e., g is an element of HomP(I ,P/I ) ≃ Homp/I (I/I2,P/I ) = HomOX

(I/I2,OX) = the dual of the coherentOX moduleI/I2 on X. The sheaf
Hom

OX
(I/I2,OX) = NX is called thenormal sheafto X in An. Thus

g is a global section ofNX. Conversely, given a homomorphismg :
HomP(I ,P/I ) and a lifting ofg to g = Pm → P, then (g) satisfies (*).
This shows that we have a surjective map of the set of first order defor-
mations ontoHo(X,NX). Suppose we are given two liftings (f + tg1) and
( f + g2t) such thatg1, g2 define the same homomorphisms ofI/I2 into
P/I , i.e.,g1 = g2. We claimthat if IA = (( fi+tg1, i) andJA = (( fi+tg2,i)),
then IA = JA, i.e., the two liftings define the same sub-scheme ofA

n
A.

This will prove that the canonical map

j : (First order def. ofX)→ Ho(X,NX)

is injective, which implies, sincej is surjective, thatj is neededbijec-27

tive. The proof thatIA = JA is immediate; from the computation in§ 4
we see that

(( fi + tg2,i)) ⊂ (( fi + tg1,i))⇔ (JA ⊂ IA)

⇔ ∃(m×m) matrices (αi j ) and (βi j ) overP such that

(a) (αi j − id)



f1
...

fm


= 0

(b) (αi j )



g1,1
...

g1,m


+ (βi j )



f1
...

fm


=



g2,1
...

g2,m


.

As was done in§ 4, if (g1) = (g2), i.e.,

g1i − g2i ≡ 0(mod I) ∀i,

Then there exists (βi j ) such that (a) and (b) are satisfied with (αi j ) = Id.
This implies thatJA ⊂ IA. In a similar mannerIA ⊂ JA, which proves
that JA = IA. Thus we have proved
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Theorem 6.1.The set ofThe set first order embedded deformationsof X
in An is canonically in one-one correspondence with NX (or Ho(NX))–
the normal bundle to X of X⊂ An.

Remark 6.1.Suppose now we are given

0→∈ A′ → A′ → A→ 0 exact

whereA′,A are finite Artin local rings such thatrkk(ǫA′) = 1 (in partic- 28

ular it follows easily thatǫ is an element of square 0). We see easily that
ǫA′ has a natural structure of anA-module and in factǫA′ ≃ A/mA as
A-module. (Givenanysurjective homomorphismA′ → A of Artin local
rings by successive steps this can be reduced to this situation.) Suppose
now thatXA is a lifting of X defined byV(IA), IA = ( f ′1, . . . , f ′m) with f ′i s
as liftings of fi ,X = V(I ), I = ( f1, . . . , fm). We observe that even ifA is
not of the formk[t]/t2, in order thatXA be flat/A and be a lifting ofX it
is neccessary and sufficient that there exists a matrix (r′i j ) such that

( f ′1, . . . , f ′m)(r′i j ) = 0 ( f ′i are liftings offi).

Suppose now are given two liftingsX1
A, andX2

A, of XA, flat overA
defined byV(I1

A′) andV(I2
A′):

I1
A′ = (g1, . . . , gm), I2

A,= (g′1, . . . , g
′
m).

Now XA is defined by an exact sequence

(*) P1
A

(r ′i j )−−−→ Pm
A → PA→ PA/IA→ 0

such that⊗AK gives the presentation forX. An easy extension of the
argument given before (cf. Proposition 3.1) for characterization of flat-
ness by lifting of generators forI shows thatX′A′, andX2

A′ are flat/A.
They are presented respectively by

P1
A′

(si j )−−−→ Pm
A′

(gi )−−→ PA′/I
1
A′ ,→ 0 exact(α)

P1
A′

(s′i j )−−−→ Pm
A′

(g′i )−−−→ PA′ → PA′/I
2
A′ ,→ 0(β)



24 1. Formal Theory and Computations

such that (α⊗A,A) and (β⊗A,A) coincide with (*) and in fact it suffices 29

that (g)(s) and (g′)(s′) are zero ands, s′ are liftings ofr. We can write

g′i = gi + ǫhi , with hi ∈ P, and

s′i j = si j + ǫti j , with ti j ∈ P.

Then (g′)(s′) = 0 iff (gi)(ti j )+ (hi )(si j ) = 0, and by the remark aboutǫA′

as anA-module (orA′-module) it follows that the right hand side above
is 0 if and only if

(†) ( fi)(ti j ) + (hi )(r i j ) = 0,

i.e.,∃(ti j ) and (hi) over p such that this holds. Conversely, we see that
givenX1

A, flat/A′ and (†), we can constructX2
A′ , flat/A′ by definingg′i =

gi+ǫhi and lifting of relations bys′i j = si j +ǫti j . Now (†) gives rise toNX

as before. Thusfixing an X1
A, flat/A′ which is a lifting of XA, flat/A the

set of liftingsXA′ of XA overA are in one-one correspondence withNX

(or Ho(NX)) or in other words the set of flat liftings XA′ over XA is either
empty or is a principal homogeneous space under NX (or Ho(NX)). In
the case A= k,A′ = k[t]/(t2) (or more generally A′ = A[ǫ]) we use
X1

A′ = X ⊗k A′ (resp. X1
A′ = XA ⊗A A′) as the canonical base point, and

using this base point the set of first order deformations getsidentified
with NXor Ho(NX).

Remark 6.2.Compare the previous proof (cf.§ 4) for the calculation
of first order (embedded) deformations ofX − −a complete intersection30

in An. In that proof we required the knowledge of the relations between
f ′i whereX = V(I ), I = ( f1, . . . , fm) whereas this idnot requiredin the
present proof (we assumeX arbitrary). This is because in the proof for
the complete intersection we obtained a little more, namely, (First order
embedded deformations ofX)↔ {gi}, gi ∈ OX. The previous proof gives
also the fact thatNX is free overOX of rank=codim X. Hence a better
proof for the case of the complete intersection would be to prove first the
general case and then show thatI/I2 is free of overOX of rank= codimX
(in An) (this implies thatNX = HomOX(I/I2,OX) is free of rank=codim
X).
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Remark 6.3.The above proof also generalizes to the computation for
first order deformations of the Hilbert scheme or more generally the
Quotient scheme (in the sense of Grothendieck) as well as theconsider-
ation of Remark 6.1 above.

Schlessinger’s T1:
We have computed above thefirst order embedded deformationsof

X. Now to compute the first order deformation ofX (as we did in§ 4)
we have to identify two first order embedded deformationsXA,XA′(⊂
A

n
A)A = k[t]/(t2) when there is an isomorphismθ : XA ≃ X′A which

induces the identity auto-morphismX → X. As we saw before, the
isomorphismθ is induced by a change of coordinates inAn

A, i.e., if Xν
are the canonical coordinates ofAn we started with andθ∗(Xν) = X′ν
then we have

X′ν = Xν + ϕν(X)t, ν = 1, . . . , n(X ⊂ An).

If a first order embedded deformation ofX = V(I ), I = ( fi) is given by 31

( fi + gi t), then

fi + gi t 7→ fi((Xν + tϕν) + g((Xν + ϕνt))t

= fi(X) + t

{∑ ∂ fi
∂Xi

ϕν(x)

}
+ tgi(X)

= fi(X) + t

gi(X) +
n∑

ν=1

∂ fi
∂X

ϕν(X)

 .

Let λ be the canonical image of (gi) in NX nadλ
′

the canonical image

of gi +
n∑
ν=1

∂ fi
∂Xν

ϕν(X) in NX. Nowϕl , . . . , ϕn are arbitrary elements of the

coordinate ring ofAn, and the canonicla image of
n∑
ν=1

∂ fi
∂Xν

ϕν(X) in NX is

precisely the image under the canonical homomorphism

ΘAn

∣∣∣
X
→ NX

whereΘAn reprsents the tangent bundle ofAn and
∣∣∣
X

denotes its restric-
tion to X. We have a natural exact sequence

I/I2→ Ω1
An

∣∣∣
X
→ Ω1

X → 0
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whereΩ1
Z denotes the K ahler differentials of order one on a scheme

X/k. The dual of this exact sequence gives an exact sequence

0→ ΘX → Θ1
An

∣∣∣
X
→ NX,

whereΘ1
An

∣∣∣
X
→ NX is the homomorphism defined above. We defineT1

X32

to be the cokernel of this homomorphism. So that we have

0→ ΘX → Θ1
An

∣∣∣
X
→ NX → T1

X → 0.

Thus we have proved

Theorem 6.2. The first order deformation of X are in one-one corre-
spondence with T1X.

Remark 6.4.Suppose thatA′ = A[ǫ] (i.e., A′ = A⊕ ∈ k). Then the
argument which is a combination of that of the theorem and Remark 6.1
above shows that

Def(A′) = Def(A) × Def(k[ǫ]),

i.e., the set of deformations ofX overA′ which extend a given deforma-
tion overA are in one-one correspondence with the first order deforma-
tion of X. For the proof of this, we remark that a similar observation has
been proved above for embedded deformations. Now identifying two
embedded deformationsXA′ andX′A′ which reduce to the same embed-
ded deformationXA overA, the argument is the same as in the discussion
preceding Theorem 6.2, and the above remark then follows.

Remark 6.5.Deformations overA′ which extend a given deformation
overA form a prinipal homogeneous space under Def(k[ǫ]), or else form
the empty set.

Remark 6.6.Note that if X is smooth, then T1
X = 0. This implies that33

any two embedded deformations XA,X′A(A = k[ǫ]) of X are isomorphic
over A(in fact obtainable by a change of coordinates inAn

A).

Remark 6.7. If X has isolated singularities,T1
X as a vector space overk

has finite dimension. For, it is a finiteOX -module with a finite set as
support.
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Proposition 6.1. Suppose that X= Xred. Then

T1
X ≃ Ext1

OX
(Ω1

X,OX)(X ⊂ An).

Proof. Let X = V(I ). Then the exact sequence

I/I2→ Ω1
An

∣∣∣
X
→ Ω1

X → 0

can be split into exact sequence as follows:

(i) 0→∈→ I/I2→ F → 0

(ii) 0 → F → Ω1
An

∣∣∣
X
→ Ω1

X → 0.

SinceX = Xred, the set of smooth points ofX is dense open inX, so
thatǫ, being concentrated at the nonsmooth points, is a torsion sheaf, in
particular, HomOX(ǫ,OX) = 0. Writing the exact sequence Hom(·,OX)
for (i), we get that

0 // HomOX(F,OX) // Hom(I/I2,OX) // 0 is exact.

NX

Writing the exact sequence Hom(·,OX) for (ii), we get that 34

0→ ΘX → ΘAn

∣∣∣
X
→ F∗ → Ext1

OX
(Ω1

X,OX)→ 0is exact

(since Ext1
OX

(
ΩAn

∣∣∣
X
,OX

)
= 0,ΩAn

∣∣∣
X

being free ).

Now T1
X = coker

(
ΘAn

∣∣∣
X
→ NX

)
, and coker

(
ΘAn

∣∣∣
X
→ F∗

)
= Ext1

OX

(Ω1
X,OX). AboveF∗ ≃ NX, and so

T1
X ≃ Ext1

OX
(Ω1

X,OX).

�
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7 Versal deformations and Schlessinger’s theorem

Let Rbe a complete localk-algebra withk as residue field (k-alg. closed
as before). We writeRn = R/mn+1

R wheremR = m is the maximal ideal
of R. We are given a closed subschemeX of An (note that definitions
similar to the following could be given for more generalX).

Definition 7.1. A formal deformation XR of X is: (i) a sequence{Xn},
Xn = XRn is a deformation ofX overRn, and (ii) iso-morphismsXn ⊗Rn

Rn−1 ≃ Xn−1 for eachn.
Suppose thatA is a finite-dimensional localk-algebra. Then ak-

algebra homomorphismϕ : R→ A is equivalent to giving acompatible
sequence of homomorphismaϕn : Rn → A for n sufficiently large. This
is so because a (local) homomorphismϕ : R→ S of two complete local
rings R,S is equivalent to a sequence of compatible homomorphisms
ϕn : R/mn

R→ S/mn
S, and in our casemn

A = 0 for n≫ 0. Given a formal35

deformationXR of X and a homomorphismϕ : R → A; Xn ⊗Rn A (via
ϕn : R→ A as above) is up to isomorphism the same for≫ 0. It is a
deformation ofX over A. We define this to be XR ⊗ A (base change of
XR by SpecA→ SpecR).

Definition 7.2. A formal deformationXR of X is said to beversalif the
following conditions hold: Given a deformationXA of X over a finite
dimensional localk-algebraA, there exists a homomorphismϕ : R→
A and an isomorphismXR ⊗ A ≃ XA; in fact, we demand a stronger

condition as follows: Given a surjective homomorphismA′
θ−→ A of local

k-algebras, a deformationXA′ over A′ a homomorphismϕ : R → A
and an isomorphismXA ⊗R A ≃ XA′ ⊗ A, there is a homomorphism
ϕ
′

: R→ A′ such thatϕ′ lifts ϕ andXR⊗R A′ is isomorphic toX′A. (Note
that it suffices to assume the lifting property in the case kerθ is of rank
1 overk.)

Let F : (Fin.loc.k − alg) → (Sets) be the functor defining defor-
mations ofX, i.e., F(A) = (isomorphism classes/A of deformations of
X/A). Given a formal deformationXR of X, let

G : (Fin.loc.k− alg.)→ (Sets)
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be defined byG(A) = Homk−alg.(R,A). Then we have a morphismj :
G→ F of functors defined by

ϕ ∈ Homk−alg.(R,A)→ XR⊗R A.

That a formal deformation is versal is equivalent to saying that the func-
tor j is formally smooth. 36

Theorem 7.1. (Schlessinger). Let F:(Finite, local, k-alg.)→ (Sets) be a
(convaraint) functor. Then there is a formally smooth functor (as above)
i.e.,

HomK−alg.(R, ·)→ F(·),

where R is acomplete local k-algebra with residue filed k, if

(1) F(k) = a single point.

(2) Given (ǫ) → A′ → A → 0 with A′, A finite local k-algebras and
(ǫ) = Ker(A′ → A) of rank1 over k and a homomorphismϕ : B→
A let B′ = A′×AB{(α, β) ∈ A′×B such that their canonical images in
A are equal}. (SpecB′ is the “gluing” of SpecB andSpecA′ along
SpecA by the morphismsSpecA→ SpecA′. If ϕ is surjective, i.e.,
SpecA→ SpecB is also a closed immersion, this is a true gluing.)
Then we demand that the canonical homomorphism

F(B′)→ F(A′) ⊗F(A) F(B)

is surjective. (Note that B′ is also a finite-dimensional local k-
algebra.)

(3) In (2) above, take the particular case A= k and A′ = k[ǫ] (ring of
dual numbers), then the canonical map defined as in (*) above

F(B′) // F(k[ǫ]) ×F(k) F(B)

(F(B[ǫ]) // F(k[ǫ]) × F(B))

is bijective, not merely surjective.
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(4) F(k[∈]) is a finite-dimensional vector space over k. 37

Remark 7.1.One first notes thatF(k[ǫ]) has a natural structure of a
vector space overk without assuming the axiom (4) above: Givenc ∈ k,
we have an isomorphismk[ǫ] → k[ǫ] defined byǫ → c · ǫ (of course
1→ 1) which defines a bijective map

c∗ : F(k[ǫ]) → F(k[ǫ]).

By this we define “multiplication byc ∈ k” on F(k[ǫ]). By the third
axiom we have a bijection

F(k[ǫ1, ǫ2]) ≃ F(k[ǫ1]) ×pt F(k[ǫ2])

(k[ǫ1, ǫ2] being the 4-dimmensionalk-algebra withǫ2
1 = ǫ2

2 = 0 and
basis 1,ǫ1, ǫ2, ǫ1ǫ2). We have canonical homomorphismk[ǫ1, ǫ2] → k[ǫ]
defined byǫ1→ ǫ, ǫ2 → ǫ which gives a mapF(k[ǫ1, ǫ2]) → F(k[ǫ]), so
that we get a canonical map

F(k[ǫ]) ×pt F(k[ǫ]) → F(k[ǫ]).

Here we use the fact that

F(k[ǫ] ⊗k k[ǫ]) = F(k[ǫ]) ×pt F(k[ǫ])

This follows by axiom (3), and

k[ǫ] ⊗k k[ǫ] ≃ k[ǫ, ǫ′].

We define addition inF(k[ǫ]) by this map, and then we check that this
map is bilinear. This gives a natural structure of ak-vector space on
F(k[ǫ]) if axioms (1), (3) hold.38

Remark 7.2.The versalR can be constructed withmR/m
2
R ≃ F(k[ǫ]).

Then with this conditionR is uniquely determined up to iso morphism.
(Note: We do not claim that givenXA the homomorphismR → A is
unique.) The functor represented byR on (finite localk-alg.) is called
the hull of F which is therefore uniquely determined up to automor-
phism.
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Proof of Schlessinger’s Theorem 1.Let Cn denotes the full subcate-
gory of (fin.loc.k-alg.) consisting of the ringsA such thatmn+1

A = 0.
This category is closed under fibered products. We will show the exis-
tence ofRby finding a versalRn for F | Cn, for all n inductively.

Take the casen = 1. C1 is just the category of rings of the formA =
k⊕V whereV is a finite-dimensional vector space. So,C1 is equivalent
to the category of finite-dimensional vector spaces. LetV be the dual
space toF(K[ǫ]), and putR1 = k⊕V. Then a mapR1→ k[ǫ] is given by
a mapV → ǫk. i.e., an element ofF(k[ǫ]). So, Hom(R1, k[ǫ]) = F(k[ǫ]).
Since, by axiom (3),F is compatiable with products of vector spaces,
R1 representsF | C1.

Suppose now thatRn−1 is given, versal forF/Cn−1, and letun−1 ∈
F(Rn−1) be the versal element. LetP be a power series ring mapping
ontoRn−1

0→ Jn−1→ P→ Rn−1→ 0.

Choose an idealJn,

Jn−1 ⊃ Jn ⊃ mJn−1,

which is minimal with respect to the property thatun−1 lifts to un ∈ 39

F(P/Jn), and putRn = P/J. We test (Rn, un) for versality. LetA′ → A
be a surjection with length 1, kerelCn, and let a test situation be given:

A′

��

a′ ∈ F(A′)

��
�O
�O
�O

Rn
// A, un ///o/o/o/o/o/o a

FormR′ = Rn ×A A′ :

R′

��

// A′

��

u′

��
�O
�O
�O
�O
�O
�O
�O
�O

///o/o/o a′

��
�O
�O
�O
�O
�O
�O
�O
�O

P

>>~
~

~
~

��@
@@

@@
@@

Rn
// A un ///o/o/o a
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SinceP is smooth, a dotted arrow exists. By axiom (2), there is au′ ∈
F(R′) mapping toun and a′. Since Jn was minimal,R′ cannot be a
quotient ofP. Henceim(P→ R′) ≈ im(P→ Rn) = Rn, and soR′ → Rn

splits:
R′ ≈ Rn[ǫ] = Rn ×k k[ǫ].

Let v′ be the element ofF(R′) induced fromun by the splitting. The
versality will be checked ifu′ = v′, for then the mapRn → R′ → A′ is
the required one.

We can still change the splitting, and the permissible changes are by
elements of Hom(Rn, k[ǫ]) = Hom(R1, k[ǫ]) = F(k[ǫ]). By axiom (3),
F(R′) = F(Rn) × F(k[ǫ]). Both u′ andv′ have the same imageun in
F(Rn). So, we can make the required adjustment. This completes the
proof of Schlessinger’s theorem.

8 Existence formally versal deformations
40

Theorem 8.1. Let X ⊂ An be an affine scheme over k withisolated
singularities. Then for the functor F= Def.X = Def the conditions of
Schles-singer’s theorem are satisfied. In particular X admits a versal
deformation.

Proof. SinceX has isolated singularities, we have rankk(Def.X)[k[ǫ]] =
rankk(T1

X) < ∞. Hence it remains only to check the axioms (2) and (3).
Axiom(2): Given (ǫ) → A′ → A, ϕ′ : B→ A a deformationXA of X

and two deformationsXA′, XB overXA

XA′

!!!a
!a

!a
!a

XB

~~ ~>
~>

~>
~>

XA

Let B′ = A′ ×A B. We need to find a deformationXB′ overB′ induc-
ing the given deformationsXA′ andXB over A′ andB respectively. As
usual we writeOXA′ = OA′ , . . ., etc. We now setOB′ = OA′ ×OA OB. We
have canonical homomorphismsB′ → B andB′ → A′. It is easily seen
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thatOB′ ⊗B′ B ≈ OB andOB′ ⊗B′ A′ ≈ OA′ . The only serious point to
check is thatOB′ is flat/B′. SinceB′ = A′ ×A B, we have a diagram

0→ (ǫ)→ B′ → B→ 0

0→ (ǫ)→ A′ → A→ 0

with exact rows. (ǫ) is of rank 1 overk, so (ǫ) ≈ k as B′ modules.
Similarly,

0 // ∈ Ok
// OB′

��

// OB

��

// 0

0 // ∈ Ok
// OA′

// OA
// 0.

It follows easily that the exact sequenceo→∈ Ok → OB′ → OB → 0 41

is obtained by tensorting 0→ (ǫ) → B′ → B → 0 wiht OB′ , and that
ǫ · Ok ≈ Ok. Now the faltness ofOB′ is a consequence of �

Lemma 8.1. Suppose that0→ (ǫ) → B′ → B→ 0 is exact with B′, B
finite local k-algebras and rkk(ǫ) = 1 (so that(ǫ) ≈ k as B′ module).
Suppose that XB′ = SpecOB′ , is a scheme over B′ such thatOB′ ⊗B′ B =
OB is flat over B,with XB = SpecOB a deformation of X= SpecOk, and
that ker(OB′ → OB) is isomorphic toOk (asOB′ module). ThenOB′ is
B′ flat; in particular, XB′ = SpecOB′ is a deformation of X over B′.

Conversely, ifOB′ is B′ flat giving a deformation of X= SpecOk,
OB′ has an exact sequence representation as in the lemma.

Proof. We have an exact sequence

0→ ǫOk → OB′ → OB→ 0,

with ǫOk ≈ Ok. We claim that this is obtained by tensoring

(*) 0 → (ǫ)→ B′ → B→ 0

by OB′ and in fact that it remains exact because of our hypothesis that
Ker(OB′ → Ol) is≈ Ok asB′-module. For, tensoring (*) byOB′ we have

ǫ ⊗ OB′ → OB′ → OB→ 0 exact.
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But ǫ⊗OB′ ≈∈ ·Ok ≈ Ok. It follows then that the canonical - homomor-42

phism∈ ⊗OB′ → OB′ , is injective, i.e., (*) remains exact when tensorted
by OB′ . Consider

0

��

0

��

⊗B′OB′ .

(R1) // 0 // (ǫ) // mB′

��

// mB

��

// 0

(R2) // 0 // (ǫ) // B′

��

// B

��

// 0

k

��

k

��
(C1) (C2)

Tensoring (C1) by OB′ (over B′) and using the Tor sequence we
find that TorB

′
1 (OB′ , k) = 0 iff OB′ flat iff the canonical homomorphism

OB′ ⊗B′ mB′ → OB′ ⊗B′ B′ = OB′ is injective. (We use the fact TorB′
1

(OB′ , B′) = 0.) Now (C2) is an exact sequence ofB-modules, and ten-
soring it byOB′ (overB′) amounts to tensoring it byOB (overB). Hence
(C2)⊗B′ OB′ stays exact sinceOB is B-flat. Finally

(R1)⊗B′ OB′ OB′ ⊗B′ (ǫ)
i // OB′ ⊗B′ mB′

a′ ��

// OB′ ⊗B′ mB� _
a
��

// 0 exact

(R2)⊗B′ OB′ 0 // OB′ ⊗B′ (ǫ) // OB′ ⊗B′ mB′B′ // OB′ ⊗B′ B // 0 exact

(R2) ⊗B′ OB′ is exact as we observed above. To prove thatOB′ is B′

flat, it is equivalent to proving thatα′ is injective, i.e., Kerα′ = 0. Note
thatOB′ ⊗B′ B ≈ OB andOB′ ⊗B′ mB ≈ OB ⊗B mB. SinceOB is B-flat,
α is injective, and form the diagram it follows thatα′ is also injective.
Further discussion of Axiom (2) and Axiom (3):Suppose we are given43

0 → (ǫ) → A′ → A → 0 with rkk(ǫ) = 1 and ak-algebra homomor-
phismϕ : B→ A. SetB′ = B×A A′. Let us consider the canonical map
(*) in Axiom (2) of Schlessinger’s theorem for the functor Def.(X) in
more detail, (i.e., the map Def.(B′) → Def.(A′) ×Def.(A) Def.(B)). Sup-
pose we are givendeformations(not merely isomorphism classes)XB′
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overB′,XA′ overA′ andXB overB and isomorphisms

XB′ ⊗B′ B
ν1−→ XB,⊗B′A

′ ν2−→ XA.

Now νi induce isomorphisms

(XB′ ⊗B′ B) ⊗B A
ν1⊗B1A−−−−−→ XB ⊗B A,

(XB′ ⊗B′ A′) ⊗A′ A
(ν2⊗A′1A)
−−−−−−−→ XA′ ⊗A′ A.

But now there is a canonical isomorphism

(XB′ ⊗B′ B) ⊗B A→ (XB′ ⊗B′ A′) ⊗A′ A.

Hence theνi determine an isomorphism

(*) (XB ⊗B A)
θ−→ (XA′ ⊗A′ A)

By the universal property of the “join”, we get a morphism

f : XB′ → ZB′

whereZB′ = Spec(OB×OA OA′)(XA = SpecOA is chosen to be one of the
objects in (*) and the homomorphismsOB → OA,OA′ → OA are then 44

defined uniquely but the fibre productOB ×OA OA′ is independent of the
choice forXA: It is fibre product ofOB andOA′ by

OB

''OOOOOOOOOOOO OA′

uukkkkkkkkkkkkkkkkk

OB ⊗B A θ
∼OA′ ⊗A′ A

and thus well defined).We claim that f is is an isomorphism. From this
claim it follows as a consequence that given deformationsXB andXA′

of X such thatXB ⊗B A is isomorphic toXA′ ⊗A′ A i.e., given pointξ ∈
(def.X)(B) ×Def(X)(A) (Def.X)(A′), a deformationXB′, which lifts XB and
XA′ depends (up to isomorphism) only on the chioce of the isomorphism
XB ⊗B A ≈ XA′ ⊗A′ A, so in particular, we have asurjective map

(*) Isom(XB ⊗B A→ XA,⊗A)→ λ−1(ξ)
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whereλ : (Def.X)(B′)→ (Def.X)(B)×(Def.X)(A)(Def.X)(A′) is the canon-
ical map of Axiom (2). ((Def.X)(B) by definition=isomorphism classes
of deformations ofX, i.e., all deformations ofXB′ of X overB′ modulo
isomorphisms which induce the identity map onX.) Take the particular
caseA = k,A′ = k[ǫ], ϕ : B→ A; thenXB ⊗B A

∼−−→
can

X,XA′ ⊗A′ A
∼−−→

can
X

and then the left hand side of (*) consists of a unique element, namely,
the one induced by the identity mapX → X. This implies thatλ−1(ξ)
consists of a unique element, and completes the verificationof Axiom
(3).Thus, finally it suffices to prove that the morphismf : XB′ → ZB′

is an isomorphism as claimed above. Note that (f ⊗ k) is the identity45

map X → X and thatXB′ ,ZB′ are flat overB. Hence our claim is a
consequence of �

Lemma 8.2. Let X1
A = SpecO1

A and X2
A = SpecO2

A be two deformations
of X = SpecOk and f∗ : X2

A → X1
A ( f : O1

A → O2
A a homomorphism

of k-algebras) a morphism such that f∗ ⊗ k is the identity( f ⊗ k is the
identity). Then is an isomorphism. (In the proof, it would suffice to
assumeO2

A flat/A).

Proof. The O i
A can be realized as embedded deformations ofX =

SpecOk, so that we have a diagram

0 // I1
A

// PA
// O1

A

f
��

// 0

0 // I2
A

// PA
// O2

A
// 0

Let X′ν = f (Xν) whereXν are the variables inPn. We haveX′ν = Xν + ϕν
whereϕν ∈ mA(X1, . . . ,Xn)(mA = max .ideal ofA). It follows easily
sinceA is finite overk (as we have seen before) thatXν 7→ X′ν is just
a change of coordinates inAn

A, so thatf is induced by an isomorphism

PA
∼−→ PA. We can assume without loss of generality that this is the

identity. Then it follows thatf is induced by an inclusionI1
A ⊂ I2

A. This
implies thatf is surjective. LetJ = Kerf so that

0→ J→ O
1
A→ O

2
A→ 0 is exact.
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SinceO2
A is A-flat, it follows that

0→ J ⊗A k→ O
1
A ⊗ k

f⊗k
−−−→ O

2
A ⊗ k→ 0 is exact.

Since f ⊗ k is the identity, it follows that (J ⊗ k) = 0 SincemA is in 46

the radical ofO1
A, by Nakayama’s lemma, it follows thatJ = 0; hencef

is an isomorphism. This completes the proof of the theorem. �

9 The case thatX is normal

Let X ֒→ An be normal of dimension≥ 2. Let U = X − SingX (Sing
X=Singular points ofX). We use the well-known

Proposition 9.1. Let Z be any smooth (not necessarily affine) scheme
over k. Then the set of first order deformations of Z is in one-to-one
correspondence with H1(Z,ΘZ), i.e.,

(Def.Z)(k[ǫ]) ≈ Hl(Z,ΘZ) (ΘZ tangent bundle ofZ).

Proof. If Z is affine, we have seen that any first order deformation of
Z is trivial, i.e., it is isomorphic to base change byk[ǫ] (this was a con
sequence of the fact that whenZ ֒→ An andZ is smooth,T1

Z = (0)).
Hence any first order deformation ofZ is locally base change byk[ǫ].
Hence if{Ui} is an affine covering ofZ, a first order deformation ofZ is
given by{ϕi j }

ϕi j : (Ui ∩U j) ⊗ k[ǫ] → (Ui ∩U j) ⊗ k[ǫ],

{ϕi j } being automorphisms of (Ui ∩ U j) ⊗ k[ǫ] satisfying the cocycle
condition. It is easy to see that first order deformations correspond to
cohomology classes. Now it is easy to see that for an affine scheme 47

W/k, (W = SpecB)

Autk[ǫ](W⊗ k[ǫ]) = Derivations ofB/k(= Ho(W,ΘW)).

The proposition now follows. �
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Lemma 9.1. Let X1
A,X

2
A be two deformations of X (not necessarily of the

first order, A=local, finite over k). Let Ui = Xi
A

∣∣∣U and letϕ : U1
A→ U2

A
be an isomorphism over A. Thenϕ extends to an isomorphism (unique)
X1

A→ X2
A.

Proof. If XA is a deformation ofX as above, we shall prove

(*) Ho(XA,OA) = Ho(UA,OUA)(UA = XA

∣∣∣
U

).

The proposition is an immediate consequence of (*), forϕ induces a
homomorphism

ϕ∗ : Ho(U2
AOA) // Ho(U1

AϕA)

Ho(X2
A,OX2

A
) // Ho(X1

A,OX1
A
).

This implies thatϕ is induced by a morphismψ : X1
A → X2

A. It is
easily seen that (ψ⊗ k) is the identity, and this implies easily thatψ is an
isomorphism.

To prove (*), we note first that ifA = k, it is well known. In the
general case, we have a representation

0→ (ǫ) → A→ Ao→ 0 exact, rkk(ǫ) = 1

By induction it suffices to prove (*) assuming its truth forXAo = XA ⊗A48

Ao. Then we have

0→ ǫOXA → OXA → OXAo
→ 0 exact,

with ǫ · OXA ≈ Ok. This is becauseXA is flat overA. As a sheaf its
restriction toU is also exact. Then we get a diagram

0 // Ho(X,Ok)

≀

// Ho(XA,OA)

��

// Ho(XAo,OAo)

≀

// 0

0 // Ho(U,Ok) // Ho(UA,OA) // Ho(UAo,OAo).

The first and the last vertical arrows are isomorphisms, and it follows
then that the middle one is also an isomorphism. This proves the propo-
sition. �
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Remark 9.1.The proposition is equivalent to saying that the morphism
of functors

(Def. X)→ (Def. U)

obtained by restriction toU is amonomorphism.

Lemma 9.2. Suppose that X has depth≥ 3 at all the points (not merely
closed points) of Sing X (e.g.,dim X ≥ 3 and X is Cohen-Macaulay)
(X necessarily normal). Then every deformation UA of U extends to a
deformation XA of X.

Proof. DefineXA by XA = SpecOXA with OA = OXA = Ho(UA,OA).
Suppose we have a presentation 0→ (ǫ) → A → Ao → 0 rkk(ǫ) = 1.
We prove this lemma again by an induction as in the previous proposi- 49

tion. This induces an exact sequence of sheaves by flatness

0 // OU

��

// OUA
// OUAo

// 0

(ǫ · OU) ·

Since depth ofOX,x at x ∈ SingX ≥ 3, by local cohomology the maps

H1(X,OK)→ H1(U,OK)

Ho(X,OK)→ Ho(U,OK)

 are isomorphisms

The isomorphismsHi(X,Ok)
∼−→ Hi(U,Ok) follow from Theorem??,

p. 44, in Hartshorne’s Local cohomology. Indeed, we have thefol-
lowing exact sequence 0→ OX → OUF → 0. We must prove that
Ho(F ) = H1(F ) = 0. Theorem?? (loc. cit) states that forX a lo-
cally Noetherian prescheme,Y a closed pre-scheme andD a coherent
sheaf onX, the following conditions are equivalent: (i)Hi

y(D) = 0,
i < n. (ii) depthYD ≥ n. Taking D = OX and Y = SingX, the
fact that Ho(F ) = H1(F ) = 0 follows immediately. In particular,
H1(U,Ok) = 0. Hence we get

0→ Ho(U,OU)→ Ho(U,OUA)→ Ho(U,OUAo
)→ 0 is exact.
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Now Ho(U,OU) = Ho(X,Ok) = Ok and

Ho(U,OUAo
) = OAoflat/Ao by induction hypothesis.

Hence50

0→ Ok → OA→ OAo → 0 is exact

andOAo flat/Ao. By proposition 3.1 it follows thatOA is flat/A and so
XA represents a deformation ofX. �

Proposition 9.2. Let X ֒→ An be such that X is of depth≥ 3 at ∀x ∈
Sing X. Then the morphism of functors

Def(X)→ Def(U), U = X − SingX

obtained by restriction is an isomorphism, i.e.,

(Def X)(A)→ (Def U)(A) is an isomorphism∀A local finite over.k.

Proof. Immediate conseqence of the above two lemmas. �

Remark 9.2.SupposeX ֒→ An is normal (with isolated singularities).
Then ifΘX is of depth≥ 3 at∀x ∈ Sing X is rigid. For, it suffices to
prove that first order deformations ofX are trivial and by the preceding
to prove this forU. We have an isomorphism

H1(U,ΘU)← H1(X,ΘX)

because of our hypothesis. ButH1(X,ΘX) = 0 SinceX is affine. This
implies the assertion.

10 Deformation of a quotient by a finite group ac-
tion

51

Theorem 10.1.(Schlessinger–Inventiones’70). Let Y be a smooth affine
variety over k with chark= 0. Suppose we are given an action of a finite
group G on Y such that the isotropy group is trivial except at afinte
number of points of Y, so that the normal affine varirty X = Y/G has
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only isolated singularities (at most the images of the points where the
isotropy is not trivial). Then if dimY = dim X ≥ 3,X is rigid. (It
suffices to assume that the set of points where isotropy is not trivial is
of codim≥ 3 ion Y. Of course, the singular points of X need not be
isolated, but even then X is rigid.)

Proof. Let U = X − SingX, andV = Y-(points at which isotropy is not
trivial). Then the canonical morphismV → U is an etale Galois cover-
ing with Galois groupG. From the foregoing discussion, it suffices to
prove thatH1(U,ΘU) = 0 We have the Cartan-Leray spectral sequence

Hp(G,Hq(V, θV))⇒ Hp+q(U, fG
∗ (θV))

where fG
∗ (θV) denotes the G-invariant subsheaf of the direct image of

the sheaf of tangent vectors onV. We haveθU = fG
∗ (θV). Hence the

above spetral sequence gives the spectral sequence

Hp(G,Hq(V, θV))⇒ Hp+q(U, θU).

Now HP(G,Hq(V, θV)) = 0 for p ≥ 1 sinceG is finite and the character-
istic is zero. Hence the spectal sequence degenerates and wehave

Ho(G,Hq(V, θV))
isom.−−−−→ Hq(U, θU).

In particular,H1(U,ΘU) ≃ Ho(G,H1(V,ΘV)). NowΘY is a vector bun- 52

dle, and since dimY ≥ 3 and (Y − V) is a finite number of points,ΘY is
of depth≥ 3 at every point of (Y − V) (or because codim (Y − V) ≥ 3).
HenceH1(V,ΘV) = H1(Y,ΘY) = 0 It follows then thatH1(U,ΘU) = 0,
which proves the theorem. �

Remark 10.1.Let Y be the (x, y)-plane,G = Z/2 operating by (x, y) 7→
(−x,−y). ThenX = Y/G can be identified with the image of the (x, y)
plane in 3 space by the mapping (x, y) 7→ (x2, xy, y2), so thatX can
be identified with the conev2 = uw in the 3 space (u, v,w). It has an
isolated singularity at the origin, but it isnot rigid (cf., the computation
of T1

X which has been done for the case of a complete intersection,§ 4
and§ 6).
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11 Deformations of cones

Let X be a scheme andF a locally freeOX-modlue of constant rank
r. The vector bundleV(F) associated toF is by definition SpecS(F),
i.e., “generalized spec” ofS(F)–the sheaf of symmetric algebras of the
OX− moduleF. We get a canonical affine morphismp : V(F) → X.
The sections ofV(F) over X (morphismss = X → V(F) such that
p ◦ s= IdX can be identified with

HomOX − alg(S(F),OX) ≈ HomOX −mod, (F,OX) ≈ Ho(X, F∗),

whereF∗ is the dual ofF. With this convention, sections of the vetor
bundle V(F) considered as a scheme over Xare≈ sections ofF∗ over
X.

Let PN+1 − (0, . . . , 0, 1)
π−→ PN be the “projection ofPN+1 onto PN

from the point (0, . . . 0, 1)”, i.e.,π is the morphism obtained by dropping
the last coordinate. LetL = PN+1− (0, . . . , 0, 1). Then we see thatL has53

a natural structure of a line bundle overPN, and in fact

L ≃ Spec


∞⊕

n=0

OPN(−n)

 .

Proof that L≃ Spec
(⊕∞

n=0 OPN(−n)
)
: We first remark that in gen-

eral givenF a locally freeOX-module of constant rankr, the vector bun-
dleV(F) = SpecS(F) associated toF (in the definition of Grothendieck)
is such that the geometric points ofV(F) correspond to the dual of
the vector bundleF associated toF in the “usual” way, that is,F be-
comes the sheaf of sections ofF. Consequently, in order to prove that
L ≃ Spec

(⊕∞
n=0 OPN(−n)

)
we must show that the invertible sheaf cor-

responding toL → PN is OPN(1). We do this by calculating the transi-
tion functions. If we denote the standard covering ofPN by u0, . . . , uN,

then we see forPN+1 − (0, 0, . . . , 0, 1)
π−→ PN we haveπ−1((X0, . . . ,XN))

is of form (X0, . . . ,XN, λ) and hence the patching data is of the form

π−1(ui ∩ u j) ≃ C × (ui ∩ u j)
Xi/X j−−−−→ C × (ui ∩ u j) ≃ π−1(ui ∩ u j)

(whereXi are the standard coordinate functions onPN). This is pre-
cisely the patching data forOPN(1). Consequently,OPN(1) is the invert-

ible sheaf associated toPN+1 − (0, . . . , 0, 1)
π−→ PN. The set of points
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P
N ≈ S = (∗, . . . , ∗, 0) ⊂ PN+1 give a section ofL over PN; we can

identify this as the 0-section of the line bundleL. We have a canonical
isomorphismAN+1 ∼←− (PN+1 − S) sending (0, . . . , 0) ← (0, . . . , 0, 1),
and henceL-(0-section)≈ AN+1 − (0, . . . , 0). Futher more, it is easily
seen thatL-(0-section)= Spec

(⊕∞
−∞OPN(−n)

)
and it is theGm bundle 54

associated toL.
Suppose now thatY is a closed subscheme ofPN. Let LY = π

−1(Y).
ThenLY is a line bundle overY and from the preceding we have

LY = Spec


∞⊕

n=0

OY(−n)

 .

LetC be the cone overY, i.e., if P is the canonical morphismP : (AN+1−
(0, . . . , 0)) → P

N induced by the isomorphismAN+1 ← (PN+1 − S)
defined above, we defineC′ = P−1(Y) and thenC′ = C− (0, . . . , 0). The
point (0, . . . , 0) is the vertex of the coneC. So,C = Closure ofC′ in
A

N+1. As before we have

LY − (0− section) = Spec


∞⊕

n=−∞
OY(n)

 .

LetC be the closure ofC in PN+1 (C being identified iinPN+1 as above).
Then we see that

C = LY ∪ (0, . . . , 0, 1),C = LY − (0− section).

We call (0, 0, . . . , 1) the vertex of the projective coneC, for (0, . . . 0, 1)
goes to the vertex ofC under the canonical isomorphism (PN+1 − S)→
A

N+1. If Y is smooth,C is smooth at every point except (possibly) at the
vertex.

Considerπ : L → PN. Let T denote the line bundle onL consisting
of tangent vectors tangent to the fibers ofL → PN. Then we have

0→ T → ΘL → π∗ΘPN → 0 quad

Let us now suppose that Y is a smooth closed subscheme ofP
N. Let

πY : LY → Y be the canonical morphism. Then we have a similar55
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exact sequence. LetTY denote the bundle of tangents along the fibres of
LY → Y, so that we have a commutative diagram

(A)

0

��

0

��

0

��
0 // TY

��

// ΘLY

��

// π∗Y(ΘY)

��

// 0

0 // T |LY

��

// ΘL|LY

��

// π∗((ΘPN)|Y)

��

// 0

0 NLY

��

∼ // π∗(NY)

��
0 0

where NLY = normal bundle for the immersionLY ֒→ P
N+1, NY =

normal bundle for the immersionY ֒→ PN. We haveTY ≃ T |LY from
which it follows that

Coker(ΘLY → ΘL|LY
)
∼−→ Coker[(π∗Y(ΘY))→ π∗(OL)LY],

i.e., NLY

≃−→ π∗(NY).

Let U = C-(vertex). Then ifNU is the normal bundle forU ֒→
A

N+1, it is immediate thatNU = j∗(NLY) where j : U → LY is the
canonical inclusion. If we denote by the sameπ the canonical morphism
π : U → Y, we deduce thatNU = π

∗(NY). Then restricting the bundles
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in (A) to U we get

(B)

0

��

0

��
(B1) 0 // TY|U // ΘU

��

// π∗(ΘY)

��

// 0

(B2) 0 // TY|U // ΘAN+1−(0)|U

��

// π∗(ΘPN |Y)

��

// 0

NU

��

≃ π∗(NY)

��
0 0

56

The exact sequence (B2) is obtained by restriction toU of the exact
sequence

(**) 0 → T
∣∣∣∣
AN+1−(0)

→ ΘAN+1−(0)→ π∗(ΘPN)→ 0

whereT
∣∣∣
AN+1−(0) is the bundle of tangent vectors tangent to the fibres of

π : AN+1 − (0)→ PN. We shall now show that we have

(C)
0 // T |U

≀≀

// ΘAN+1−(0)|U
≀≀

// π∗(ΘPN |Y)

≀≀

// 0

0 // π∗(OPN) // π∗(OPN(1))N+1 // π∗(ΘPN) // 0,

where the second row is the pull-backπ∗ of the well-known sequence

0→ OPN → (OPN(1))N+1 → ΘPN → 0

onPN (the middle term of this exact sequence is the direct sum ofOPN(1)
taken (N + 1) times). Let us examine the canonical homomorphism
h : T |U → ΘAN+1−(0)|U . Let (z0, . . . , zN) be the coordinate ofAN+1.
Then H0(AN+1,ΘAN+1) is a free moduleM over P = k[z0, . . . , zN+1] 57

with basis
∂

∂z0
, . . . ,

∂

∂zN+1
. We see easily thath is defined by restriction

toAN+1 − (0) of
ϕ : P→ M
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whereϕ(1) = Σzi
∂

∂zi
(1 is generator ofP overP). Henceϕ is a graded

homomorphism, and is therefore defined by a homomorphism of sheaves
onPN. We see indeedϕ = π∗(ϕ0), where

ϕ0 : OPN → (OPN (1))N+1.

(OPN(1) is defined by homogeneous elements of degree≥ 1 in P con-
sidered as a module overP). From this the assertion (C) follows easily,
and we leave these details to the reader.

LetF be a coherentOPN module. Then we have

Hp(L, π∗F) ≃ Hp(PN, π∗π
∗F).

Now π∗F is defined by the sheaf ofOPN modules

∞⊕

0

F(−n),

considered as a sheaf of modules over
∞⊕
0

OPN(−n)), so that we find

π∗π∗F =
∞⊕
0
F(−n) and hence

Hp(L, π∗F) =
∞⊕

0

Hp(PN,F(−n)).

Similarly, if F is a coherentOY-module, we get58

Hp(LY, π
∗
F) =

∞⊕

0

Hp(Y,F(−n)),

Hp(U, π∗F) =
∞⊕

−∞
Hp(Y,F(n)) (U = C − (0)) and

Hp(AN+1 − (0), π∗F) =
∞⊕

−∞
Hp(PN,F(n)).
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Let us now suppose that Y is a smooth closed subvariety ofP
N (or

dimension≥ 1) and that it is projectively normal, i.e., C is normal.
We have then

T1
C = Coker(ΘAN+1|C → NC).

But sinceC is normal (of dimension≥ 2)

H0(ΘAN+1|C) ≃ H0(U,ΘAN+1−(0)|C).

For,ΘAn+1|C is a trivial vector bundle and hence this follows from the
fact H0(U,OU) = H0(C,OC). Now NC is a reflexiveOC-module since
NC = HomOC(I/I2,OC), where I is the defining ideal ofC in AN+1.
Because of this it follows that

H0(U,NU) = H0(C,NC).

Hence we have

T1
C = Coker(H0(U,ΘAN+1−(0)|U)→ H0(U,NU)).

Now from (B) we get 59

H0(U,ΘAN+1−(0)|U)
p //

α

��

H0(U, π∗(ΘPN |Y))

β

��
H0(U,NU)

∼
q

// H0(U, π∗NY).

HenceT1
C = Cokerα = Coker(Imp

β
−→ H0(U, π∗NY)). Now β

is a graded homomorphism of graded modules over
⊕
n=0

H0(Y,OY(n)),

namely, the gradings are

H0(U, π∗(ΘPN |Y)) =

∞⊕
−∞

H0(Y, (ΘPN |Y)(n))

��

H0(U, π∗NY) =

∞⊕
−∞

H0(Y,NY(n)).
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From (C), identifyingΘAN+1−(0)|U ≈ π∗(OPN(1))N+1, we get

H0(U,ΘAN+1−(0)|U) =
∞⊕

n=−∞
H0(PN,OPN(n+ 1))

and then by (C),p is also a graded homomorphism. Hence (Im p) is a
graded submodule ofH0(U, π∗(ΘPN |Y)). From this it follows thatT1

C has
a canonical structure of a graded module overk[z0, . . . , zN+1] and in fact
that it is a quotient of the graded module

NC = H0(C,NC) =
∞⊕

n=−∞
H0(Y,NY(n)).

Thus we get

Proposition 11.1. Let Y be a smooth projective subvariety ofPN (of60

dimension≥ 1) such that the cone C over Y is normal (we have only
to suppose that C is normal at its vertex). Then T1

C has a canonical
structure of a graded module over k[z0, . . . , zN+1], in fact it is a quotient

of the graded module
∞⊕
−∞

H0(Y,NY(n)).

12 Theorems of Pinkham and Schlessinger on de-
formations of cones

Theorem 12.1. Let Y be as above, i.e., Y is smooth closed֒→ PN and
dimY ≥ 1. Then

(1) (Pinkham). Suppose that T1
C is negatively graded, i.e., T1C(m) = 0,

m> 0. Then the functor

Hilb(C)→ Def(C)

is formally smooth.

(2) (Schlessinger). Suppose that T1
C is concentrated in degree0. Then

we have a canonical functor

Hilb(Y)→ Def(C),
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and it is formally smooth. In particular, every deformationof C is
a cone.

Recall thatHilb(C) is the functor such that for local finite k-algebras
A Hilb(C)(A) = {Z ⊂ Pn+1× A,Z closed subscheme, Z is flat over A and
Z represents an embedded deformation ofC over A}.

Proof. (1) Given 0→ (ǫ)→ A′ → A→ 0 exact withrkk(ǫ) = 1 andA′,
A finite local overk, we have to prove that the canonical map

(*) Hilb( C)(A′)→ Def(C)(A′) ×Def(C)(A) Hilb(C)(A)

is surjective. Take the caseA′ = k[ǫ], A = k. In particular (∗) implies 61

that

(a) Hilb(C)(k[ǫ]) → Def(C)(k[ǫ]) is surjective, and

(b) given ξ ∈ Hilb(C)(A), let ξ be the canonical image ofξ
in Def(C)(A).

Then, ifξ can be extended to a deformation ofC overA′, then∃η ∈
Hilb(C)(A′) such thatη 7→ ξ (the difference between this and (∗) above
is that we do not insist thatη 7→ ξ).

We claim now that (a) and (b)⇒ (∗). (In particular, to prove (1)
it suffices to check (a) and (b).) Givenξ as above, the set of allη ∈
Hilb(C)(A′) such thatη 7→ ξ (provided there exists anη0 such thatη0 7→
ξ) has a structure of a principal homogeneous space under Hilb(C)(k[ǫ])
(see Remark 6.1). [This can be proved in a way similar to proving that
Hilb(C)(k[ǫ]) ≃ H0(C,Hom(I ,OC)), whereI is the ideal sheaf defining
C in PN+1, cf. Remark 6.2.] Similarly, all deformationsηwhich extendξ
form a principal homogeneous space under Def(C)(k[ǫ]), provided there
exists one. Hence, if (b) is satisfied andη is a deformation extendingξ,
because of (a) there exists in factη, η 7→ ξ andη 7→ η. This completes
the proof of the above claim.

Now Hilb(C)(k[ǫ]) = H0(C,NC). We haveC = LY∪ (vertex) andC
is normal at its vertex. Hence

H0(C,NC) = H0(LY,NLY) =
∞⊕

n=0

H0(Y,NY(−n)).
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If T1
C is negatively graded, it follows that the canonical map

∞⊕
n=0

H0(Y,NY(−n))

��

⊂
∞⊕

n=−∞
H0(Y,NY(n))

T1
C

is surjective. Hence we have checked that62

Hilb(C)(k[ǫ]) → (Def C)(k[ǫ])

is surjective. It remains to check (b). Givenξ ∈ Hilb(C)(A), suppose
that ξ is locally extendable, i.e., givenξ : CA → PN+1

A , (i) ξ can be
extended locally to deformation overA′ at every point ofCA, and (ii)
this extension can be embedded inPN+1

A′ , so as to extendξ locally. We
observe that it is superfluous to assume (ii), for we have seenthat in the
affinecase (X ⊂ An)

(Embedded Def)(X)→ Def(X)

is formally smooth. Then we see that to extendξ to anη ∈ Hilb(C)(A′),
we get an obstruction inH1(C,NC) (this is an immediate consequence of
the fact already observed, that extensions form a principalhomogeneous
space, cf. Remark 6.5). We observe that forξ the property (i) is satisfied.
Since there is anη ∈ Def(C)(A′) with η 7→ ξ (ξ ∈ Def(C)(A), ξ → ξ),
the condition (i) is satisfied for allx ∈ C. But nowC is smooth at every
point ofC − C. In this case we have already remarked before that (i) is
satisfied (cf., Proof of Proposition 9.1). SinceC is normal,C is of depth
≥ 2 at its vertex, so that by local cohomology we get

H1(C,NC) ֒→ H1(LY,NLY).

We have

H1(LY,NLY) =
∞⊕

n=0

H1(Y,NY(−n)) ⊂
∞⊕

n=−∞
H1(Y,NY(n)) = H1(U,NU),
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Now by hypothesisξ ∈ Def(C)(A) can be extended toη ∈ Def(C)63

(A′); in particular, η|U gives an extension ofξ|U . Hence the canon-
ical image of this obstruction inH1(U,NU) is zero. (We see that as
above, extending an embedded deformation ofU gives an obstruction
in H1(U,NU).) This implies that there is anη ∈ Hilb(C)(A′) such that
η 7→ ξ. This checks (b), and the proof of (1) is now complete.

(2) Given a deformation ofY, we get canonically a deformation of
U = C− (0). To get a canonical functor Hilb(Y)→ Def(C), it suffices to
prove that a deformation ofU can be extended to a deformation (which
is unique by an earlier consideration). If depth ofC at its vertex is≥ 3
this follows by an earlier result, but we shall prove this without using
it. Let 0 → (ǫ) → A′ → A → 0 be as usual, and letYA′ { YA be
deformations ofY in PN. Then we have an exact sequence of sheaves.

0→ OY → OYA′ → OYA → 0, OY ≈ ǫ · OYA′ ,

OYA′ beingA′ flat, etc. Similarly forY = PN. Then we get a commuta-
tive diagram

0

��

0

��
H0(PN,OPN(n))

��

// H0(Y,OY(n))

��

// 0

H0(PN
A′ ,OPN

A′
(n))

��

// H0(YA′ ,OYA′ (n))

��

// 0

H0(PN
A ,OPN

A
(n))

��

// H0(YA,OYA(n))

��

// 0

0
(C1)

0
(C2)

wheren ≥ 0. It is immediate that (C1) and (C2) are exact. From this64
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commutative diagram, by induction onrkkA′, it follows that

H0(PN
A′ ,OPN

A′
(n)) → H0(YA′ ,OYA′ (n))→ 0

is exact because (C1) and (C2) are exact and the first and thirdrows are
exact. Then as an easy exercise it follows that the second rowis exact.
Then it follows thatH0(YA′ ,OYA′ , (n)) → H0(YA,OYA(n)) → 0 is exact.

DefineOCA′ =
∞⊕

n=0
H0(YA′,OYA′ (n)) (resp.OCA). Then we get an exact

sequence

0→ OC → OCA′ → OCA → 0, OC ≃ ǫ · OCA′ .

Again by induction onrk A′ it follows thatOCA′ is A′-flat (for, OCA

is A-flat by induction hypothesis and by, an earlier lemma (Lemma8.1)
this claim follows). Hence SpecOCA′ provides a deformation ofC, i.e.,
it extends the deformation ofU = C − (0) which is given by the defor-
mationYA′ of Y in PN. This proves the required assertion. Since depth
of C at its vertex is≥ 3 by an earlier result this is the case. Hence we
get a canonical functor

Hilb(Y)→ Def(C).

From this stage the proof is similar to (1) above. As before itsuffices
to check assertions similar to (a) and (b) above. We see that Hilb(Y)
(k[ǫ]) ≃ H0(Y,NY). We have

H0(Y,NY) ⊂
∞⊕

n=−∞
H0(Y,NY(n))

��
T1

C.

65

The hypothesis thatT1
C consists only of degree 0 elements, implies

thatH0(Y,NY)→ T1
C is surjective, i.e.,

Hilb(Y)(k[ǫ]) → (DefC)(k[ǫ])
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is surjective. This checks (a). To check (b), take 0→ (ǫ) → A′ →
A→ 0 as usual,ξ ∈ Hilb(Y)(A), ξ 7→ η ∈ (DefC)(A). Suppose we are
givenη′ ∈ (DefC)(A) extendingη, then we have to findξ′ ∈ Hilb(Y)(A′)
extendingξ. SinceY is smooth, the condition for local extension over
A is satisfied as above, and hence we get an obstruction elementλ ∈
H1(Y,NY). We have

H1(Y,NY) ֒→
∞⊕

−∞
H1(Y,NY(n)).

In a similar way, the elementη|U defines an obstruction element

µ ∈ H1(U,NU) =
∞⊕
−∞

H1(Y,NY(n)). But by hypothesis this obstruction

is zero. By functorially and the fact thatH1(Y,NY) ֒→
∞⊕
−∞

H1(Y,NY(n))

it follows thatλ = 0. This proves the existence ofξ′ and the theorem is
proved. �

Examples where the hypothesis of the above theorem are satisfied.

Lemma 12.1. Let Y ֒→ PN be a smooth projective variety such that


H1(Y,OY(n)) = 0, ∀n , 0, n ∈ Z
H1(Y,ΘY(n)) = 0, ∀n , 0, n ∈ Z,

and Y is projectively normal. Then T1
C consists only of degree0 elements 66

(dimY ≥ 2, follows from the hypothesis).

The hypothesisH1(Y,OY(n)) = 0, n , 0 implies that

T1
C = Coker(ΘAN+1−(0)|U → NU) = Coker(π∗(ΘPN |Y)→ π∗(NY))

[as graded modules modulo elements of degree 0]. To prove this we
have only to write the cohomology exact sequence for (B2) of§ 11 as
well as use (C) of§ 11. To compute Coker(π∗(ΘPN |Y) → π∗(NY)), use
the exact sequence

0→ π∗(ΘY)→ π∗(ΘPN |Y)→ π∗(NY)→ 0.
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Now H1(π∗(ΘY)) =
∞⊕
−∞

H1(Y,ΘY(n)). Since by hypothesisH1(Y,

ΘY(n)) = 0 for n , 0, it follows by writing the cohomology exact se-
quence for the above, that Coker(π∗(ΘPN |Y) → π∗(NY)) = T1

C has only
degree 0 elements. This proves the lemma.

Lemma 12.2. Let Y⊂ PN be a smooth projective variety such that

H1(Y,OY(n)) = 0, ∀n > 0

H1(Y,ΘY(n)) = 0, ∀n > 0.

Then T1
C has only elements in degree≤ 0.

Proof. The proof is the same as for (2) above. �

Remark 12.1.Given a smooth projectiveY and an ample line bundleL67

onY the conditions in (1) (resp. (2)) above are satisfied for the projective
embeddings ofY defined bynL, n≫ 0 if dim Y ≥ 1 (resp. dimY ≥ 2).

Exercise 12.1.Let Y0 = 3 collinear points in P2 and Y1 = 3 non-
collinear points inP2. Take a deformation ofY0 to Y1, which obviously
exists. Show that this deformation cannot be extended to a deformation
of the affine coneC0 overY0 to the affine coneC1 overY1. [For, if such
a deformation exists, we see in fact that∃ a deformation ofC0 to C1,
closures respectively ofC0 andC1 in P3. We have a (finite) morphism
ϕ : C1 → C0 which is an isomorphism outside the vertex and not an
isomorphism at the vertex. We have

0→ OC0
→ ϕ∗(OC1

)→ k→ 0.

This implies that the arithmetic genus ofC1 = (arithmetic genus of
C0 + 1), but if there existed a deformation, they would be equal.]

13 Pinkham’s computation for deformations of the
cone over a rational curve inPn

Lemma 13.1. Let Y ⊂ Pn be a connected curve of degree n, not con-
tained in any hyperplane. The Y= Y1 ∪ . . . ∪ Yr where Yi are smooth
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rational curves of degree ni such that n= Σni , each Yi spans a linear
subspace ofPn of dimension ni and the intersections of Yi are transver-
sal.

Proof. Let Y be an irreducible curve of degree< n in Pn. Then we
claim that there is a hyperplaneH such thatY ⊂ H. Choosen distinct
points onY. There exists a hyperplaneH passing through thesen points. 68

We claim thatH containsY for if H does not containY it follows that
deg(H ·Y) > n, contradicting the fact degY < n. It then follows that ifY
is an irreducible curve of degreer, r < n, then there is a linear subspace
H ≃ Ps in Pn such thatY ⊂ H ≃ Ps.

Now let Y be a curve inPn of degreen not contained in any hyper-
plane. LetYi(1 ≤ i ≤ r) be the irreducible components ofY. Then if
ni = degYi, we haven = Σni . By the foregoing, ifHi is the linear sub-
space ofPn generated byYi, then dimHi ≤ ni . SinceYi ’s generatePn,
a fortiori the Hi ’s generatePn. SinceY is connected,∪Hi is also con-
nected, i.e., we can write a sequenceH1, . . . ,Hr such thatH j∩H j+1 , φ.
We find easily that ifL j is the linear subspace generated byH1, . . . ,H j,

then dimL j ≤ n1 + · · · + n j . Sincen =
r∑

i=1
ni and dimLr = n it follows

that dimL j = n1 + · · · + n j . It follows in particular that dimHi = ni and
thatL j ∩H j = one point. It remains to prove thatYi is smooth and ratio-
nal (the assertions about transversality are immediate by the foregoing),
and this is a consequence of the following �

Lemma 13.2. Let Y be an irreducible curve inPn of degree n not con-
tained in any hyperplane. Then Y is a smooth rational curve, in fact
parametrized by t7→ (1, t, t2, . . . , tn).

Proof. Let x1 be a singular point ofY. Choosen distinct pointsx1, . . . ,

xn on Y. Then there is a hyperplaneH such thatxi ∈ H. Now x1 cannot
be smooth inH ∩ Y, for if it were so it would follow thatx1 is also
smooth onY. From this it follows easily 69

Deg(H · Y) > n

which is a contradiction. Hence every point ofY is smooth. �
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To prove the assertion about parametric representation andratioral-
ity of Y, projectY from a point p in Y into Pn−1 (see§ 11). We get
an irreducible curveY ⊂ Pn−1 of degree (n − 1). Then it is smooth
and by induction hypothesisY′ can be parametrized as (1, t, . . . , tn−1).
The projection can be identified as the mapping obtained by dropping
the last coordinate. Hence the parametric form ofY can be taken as
(1, t, . . . , tn−1, f (t)) where f (t) is a polynomial. Take the hyperplaneH
asxn = 0; then by the hypothesis thatY is of degreen, it follows that f (t)
polynomial of degreen. Then by change of coordinates we see easily
that the parametric form ofY is t 7→ (1, t, t2, . . . , tn).

Lemma 13.3. Let Y be an irreducible curve inPn of degree n, not con-
tained in any hyperplane, or equivalently, a (smooth) curveparametri-
zed by(1, t, . . . , tn). Then Y is projectively normal.

Proof. Let L = OPn(1)|Y. It is well known that projective normality of
Y ⊆ Pn is equivalent to the fact that the canonical mapping

ϕν : H0(Pn,OPn(ν))→ H0(Y, Lν) is surjective.

�

This follows from the following

Sublemma 13.1.Let X be a normal projective variety. Then X is pro-70

jectively normal, i.e.,̂X (the cone over X) is normal if and only if H0(Pn,

OPn(ν))→ H0(X, Lν), L = OPn(1)|X, ν ≥ 0, is surjective.

Proof. In general we haveA = {functions onX̂ − (0)} =
⊕
ν∈Z

H0(X, Lν)

(see discussion in§ 11). Now sinceL is ample we haveH0(X, Lν) = 0,
ν < 0, and thereforeA =

⊕
ν≥0

H0(X, Lν). Now supposeX̂ is normal.

Then{functions onX̂ − (0)} = {functions onX̂}. Also, X̂ ⊂ P̂n = An+1,
and using the same reasoning as beforeB = {functions onAn+1} =⊕
ν≥0

H0(Pn,OPn(ν)). But any function onX̂ can be extended toAn+1

which implies the natural mapB
γ
−→ A is surjective. ThereforeH0(Pn,

OPn(ν))→ H0(X, Lν) is surjective∀ν ≥ 0.
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In general we haveH0(Pn,OPn(ν)) → H0(X, Lν) is surjective for
ν large. Also⊕H0(X, Lν) is normal sinceX is. Thus

⊕
ν≥0

H0(X, Lν) is

the integral closure of Imγ. Hence if we assumeH0(Pn,OPn(ν)) →
H0(X, Lν) is surjective∀ν ≥ 0, we have that⊕H0(X, Lν) is normal. This
meansX is normal.

Now returning to the proof of the lemma,Y ≃ P1 andL ≃ OP1(n) so
that Lν ≃ OP1(nν). It is clear thatϕ1 is injective if and only ifY is not
contained in any hyperplane. On the other hand, we have

dim H0(Pn,OPn(1)) = dim H0(P1,OP1(n))

= n+ 1.

Henceϕ1 is an isomorphism, i.e.,Y ֒→ Pn is the immersion defined71

by the complete linear system associated toOP1(n). It is seen easily that
Sν(H0(P1,OP1(n)) → H0(P1,OP1(nν)) is surjective. This implies thatϕν
is surjective for allν, and the lemma is proved. �

Lemma 13.4. Let Y be as in the previous lemma. Then

H1(Y, Lν) = 0, ν ≥ 0

H1(Y,ΘY(ν)) = 0, ν ≥ 0

(the conditions in Lemma 12.1 are satisfied).

Proof. It is well known thatΘY ≃ OP1(2) andH1(P1,OP1(ν)) = 0, ν ≥ 0.
This proves the lemma. �

Proposition 13.1. Let Y be the nonsingular rational curve inPn of de-
gree n parametrized by t7→ (1, t, . . . , tn). Let C be the cone inAn+1 over
Y andC its closure inPn+1. Then the function

Hilb(C)→ Def(C)

is formally smooth. (Note byHilb(C) we mean the restriction of the
usualHilb to (local alg. fin./k) and defining deformations ofC.)

Proof. This is an immediate consequence of Lemma 12.1. �
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Let R be the complete local ring associated to the versal defor-
mation ofC (with tangent space= Def(C)(k[ǫ]) and R′ the comple-
tion of the local ring at the point of the scheme Hilb(C) corresponding
to C. Let ρ : R → R′ be thek-algebra homomorphism defined by72

Hilb(C) → Def(C) to define this homomorphism we need not use the
representability of Hilb(C), it suffices to note that Hilb(C) also satisfies
Schlessinger’s axioms). From the above proposition it follows that the
homomorphismρ is formally smooth. Hence we can conclude thatR is
reduced (resp. integral, etc.) iff R′ is reduced (integral, etc.).

To study Hilb(C) we note thatC is of degreen in Pn+1 and that it is
smooth outside its vertex.

Proposition 13.2. Let X ֒→ P
n+1 be a smoothprojective surface of

degree n inPn+1, not contained in any hyperplane.ThenX specializes
to C, i.e., there is a 1-parameter flat family connectingX andC.

Proof. Let H∞ be the hyperplane at∞, with equationxn+1 = 0 (coor-
dinates (x0, . . . , xn+1)). Let X be any closed subscheme ofPn+1. Then
it is easy to see thatX “specializes set theoretically” to the cone over
X · H0 (with vertex (0, . . . , 0, 1) and baseX · H∞); in fact we define the
1-parameter familyXt, X1 = X, X0 = cone overX · H∞ (as point set) as
follows.

(x0, . . . , xn+1) ∈ Xt ⇐⇒ (x0, . . . , txn+1) ∈ X.

This family is obtained as follows: Consider the morphism

A
n+2 × A1→ An+2

defined by ((x0, . . . , xn+1), t) 7→ (x0, . . . , xn, txn+1). We see that it defines
rational morphism

: Pn+1 × A1→ Pn+1

and thatϕ is indeed a morphism outside the pointx0 = ((0, . . . , 0, 1), 0).73

Let us denote byϕt the morphism (resp. rational fort = 0)

ϕt : Pn+1→ Pn+1; ϕt = ϕ|Pn+1 × {t}.

Then for allt , 0, ϕt is an isomorphism. LetZ′ = ϕ−1(X) (scheme
theoretic inverse image). We see thatZ′ is a closed subscheme ofPn+1×
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(A1−x0). There exists a closed subschemeZ of Pn+1×A1 which extends
Z′ and such thatZ is the closure ofZ′ as point set. It is easy to see that
Z = Z′ ∪ (0, . . . , 0, 1) (as sets). Letp : Z → A1 denote the canonical
morphism. Then∀t ∈ A1, t , 0, p−1(t) ≃ Xt and for t = 0, p−1(0) ≃
cone overX · H∞ (as sets).

The map (x0, . . . , xn+1) → (x0, . . . , xn, txn+1) (t , 0) defines an au-
tomorphism ofPn+1, the image ofX under this is denoted byXt. The
schemeXt specializes to a schemeX0 ֒→ Pn+1 (this follows for exam-
ple by using the fact that Hilb is proper). From the above discussion it
follows thatX0 = cone overH · X∞ (as point sets). It follows from this
argument that we can chooseZ so thatp : Z→ A1 is flat (and thenZ is
uniquely determined).

Suppose now thatX is smooth,X · H∞ is smooth and that the cone
over H∞ · X (scheme theoretic intersection) is normal. Then we will
show thatp−1(0) = X0 = (cone overX · H∞) scheme theoretically. For
this, letI be the homogeneous ideal ink[x0, . . . , xn+1] of all polynomials
vanishing onX. Let I = ( f1, . . . , fq) where fi = fi(x0, . . . , xn+1) are ho-
mogeneous polynomials. ThenXt = V(It) whereIt( fi(x0, . . . , xn, txn+1))
for t , 0. Let X′0 = V(I ′0) whereI ′0 is the idealI ′0 = ( fi(x0, . . . , xn, 0)). 74

Let I0 be the ideal ofX0. Then clearlyI ′0 ⊂ I0. Also it is easy to seeX′0 is
the scheme theoretic cone overX · H∞. This means (X′0) red= (X0) red.
For, sinceI ′0 ⊂ I0 we haveX′0 ⊃ X0. But by assumptionX′0 is normal
hence in particular reduced. ThereforeX′0 = X0 as required.

Let us now return to our particular case, whereX is a smooth projec-
tive surface inPn+1 of degreen not contained in any hyperplane. Then
we can choose a suitable hyperplane and call itH∞ such thatH∞ · X is
smooth (Bertini) of degreen in Pn, and not contained in any hyperplane.

(The ideal defined byX ∩ H∞ is OX(−1). We have

0→ OX → OX(1)→ OX∩H∞(1)→ 0

is exact. This gives

0 // H0(X,OX) // H0(OX(1)) // H0(X ∩ H∞,OX·H∞(1)) exact

0 // H0(Pn+1,OPn+1)

surjection

OO

// H0(OPn+1(1))

injective

OO

// H0(OPn,OPn(1)) //

OO

0 exact.
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The second row is exact, and the first vertical arrow is a surjection.
The second vertical line is injective. This implies (via diagram chasing)
that the third arrow is an injection which impliesX∩H∞ is not contained
in any hyperplane. (We make this fuss becausea priori degree does not
imply having the same Hilbert polynomial.))

Then by the preceding lemmas it follows thatH∞ · X is a ratio-
nal curve inPn parametrized by (1, t, . . . , tn) and then by the above dis-
cussion it follows that there is a 1-parameter flat family of closed sub-75

schemes deformingX to C (C is the closure inPn+1 of the cone associ-
ated toX · H∞). This comples the proof of the proposition. �

Remark 13.1.Let P be the Hilbert polynomial ofC ֒→ Pn+1. Let H
denote the Hilbert scheme of all closed subschemes ofP

n+1 with Hilbert
polynomialP. ThenH is known to be projective. The ring associated
with Hilb(C) above, is the completion of the local ring ofH at the point
corresponding toC. Let Hs be the open subscheme ofH of pointsh ∈ H
such that (a) the associated subschemeXh of Pn+1 is smooth and (b)Xh

is not contained in any hyperplane inPn+1. It is easy to see that (a) and
(b) define an open condition; that (a) defines an open condition is well
known, and that (b) also defines an open condition is easily checked.
The foregoing shows that as a point setHs corresponds to the set of
smooth surfaces inPn+1 of degreen not contained in any hyperplane and
further Hs contains points associated to projective cones over smooth
irreducible rational curves of degreen in Pn.

The varieties inPn+1 corresponding to points ofHs have been clas-
sified by the following

Theorem 13.1 (Nagata). Let X ֒→ P
n+1 be a closed smooth (irre-

ducible) surface of degree n, not contained in any hyperplane. Then
either (a) X is arational scroll, i.e., it is a ruled surface where the rul-
ings are lines inPn+1 and it is P1 bundle overP1; in fact X ≈ Fn−2;
where Fr we denote aP1 bundle overP1 with a section B having self-
intersection(B)2 = −r, and then it is embedded by the linear system76

|B+ (n− 1)L|, where L denotes the line bundle corresponding to the rul-
ing, or (b) n= 4 and X= P2 given by the Veronese embedding ofP2 in
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P
5, i.e. the embedding defined byOP2(2):

(x0, x1, x2) 7→ (x2
0, x

2
1, x

2
2, x1x2, x2x0, x0x1), or

(c) n= 1, X = P2.

Remark 13.2.Let X = P2, and take the Veronese embedding, with

U0 = x2
0, U1 = x2

1, U2 = x2
2

V0 = x1x2, V1 = x2x0, V2 = x0x1.

ThenX is adeterminantal variety, defined by (2× 2) minors of the
matrix 

U0 V2 V1

V2 U1 V0

V1 V0 U2



The coneC over the rational quartic curve has a determinantial rep-
resentation defined, for instance, by lettingU2 specialize toV2, i.e., sub-
stitutingV2 for U2 in the above matrix.

Remark 13.3.The general scroll can be checked to be the determinantal
variety defined by (2× 2) minors of the (2× n) matrix

[
x0 . . . (xn−1 + xn+1)
x1 . . . xn

]
,

and the coneC is obtained by settingxn+1 = 0 in this matrix. 77

Let us now take the case n= 4. Any two scrolls (resp. Veronese
surfaces) inP5 are equivalent under the projective group. HenceHs

split up into two orbits under the projective group: say,Hs = K1 ∪ K2.
We note also that there exists no flat family of closed subschemes of
P

n+1 connecting a scroll and a Veronese. For if there existed one,the
Veronese would be topologically isomorphic to a scroll (say, we are
over C). This is not the case: One can see this, for example, by the
fact thatH2 (scroll,Z) = Z2, H2(P2,Z) = Z. SinceKi are orbits under
PGL(5), they are locally closed inHs, and the nonexistence of a flat
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family connecting a member ofK1 to K2 shows thatKi(i = 1, 2) are in
fact open inHs, so thatHs is the union of disjoint open setsK1 andK2; in
particular,Hs is reducible. Letξ be the point ofH determined byC [we
fix a particularC, namely, the cone inPn+1 with vertex (0, . . . , 0, 1) and
base the rational curve inPn parametrized by (1, t, t2, . . . , tn)]. We saw
above that the closure ofHs containsξ. This implies thatH is reducible
at ξ.

We shall now show that any “generalization” ofC is again a pro-
jective cone over a smooth rational curve inPn not contained in any
hyperplane. In other words, consider a 1-parameter flat family of closed
subschemes whose special member isC and whose generic member is
W. ThenW has only isolated (normal) singularities, is of degreen and
not contained in any hyperplane. We shall now prove more generally
that a surfaceW in Pn+1 (which is not smooth) having these properties
is a cone of the typeC. To prove this letθ be a singular point ofW.
Then we can find a hyperplaneL throughtθ such that (L ·W) is smooth78

outsideθ (Bertini’s theorem). NowL ≈ Pn, L ·W is connected, (L ·W)
is not contained in any hyperplane (same argument as forX∩H∞ in the
proof of Proposition 13.2), and it is of degreen. Since it has only one
singular point, it follows by Lemmas 13.1 and 13.2 that (L · W) con-
sists ofn lines meeting atθ. This happens for almost all hyperplanesL
passing throughθ. We take coordinates inPn+1 so thatθ = (0, . . . , 0, 1)
and take projection on the hyperplaneM = {xn+1 = 0}. We can suppose
that the choice ofL is so made thatL ·W is smooth and not contained
in any hyperplane, so thatL ·W is the rational curve parametrized by
(1, t, . . . , tn) with respect to suitable coordinates inL ≈ Pn. Let B be the
projected variety inM. It follows that almost all the lines joiningθ to
points ofB are inW from which it follows immediately that in fact all
these lines are inW. In particular, we haveB =W ·M andW is the cone
overB. This proves the required assertion.

Thus any “generalization” ofC is either a cone of the same type as
C, a scroll, or a Veronese. It follows then that in the neighborhood of
ξ, H consists of only (parts) of three orbits underPGL(5), namely,K1,
K2 and∆, where∆ is the orbit underPGL(5) determined byC. In a
neighborhood ofξ, K1 andK2 are patched along∆.
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It follows that SpecR whereR is the complete local ring defined by
Def(C) is again reducible and has only two irreducible components.

Remark 13.4.It has been shown by Pinkham thatR is reduced, that 79

the irreducible component corresponding to scrolls is of dimension 2
and the one corresponding to Veronese is of dimension 1, thatthey are
smooth, and that they intersect at the unique point corresponding toC
having normal crossings at this point.

Remark 13.5.The above argument can be extended to show that SpecR
for n ≥ 4 is irreducible. Pinkham shows SpecR has an embedded com-
ponent at the point corresponding toC and outside this it corresponds to
scrolls.

Remark 13.6.The reason that forn = 4 we have got two components
is that in this case the cone over the rational quartic is a determinantal
variety in two ways, namely, it can be defined by (2× 2) minors of

[
x0 . . . x3

x1 . . . x4

]
or of



x0 x2 x4

x2 x1 x3

x4 x3 x2



Remark 13.7.Case n≤ 4. Exercise: Discuss.





Part 2

Elkik’s Theorems on
Algebraization

1 Solutions of systems of equations
80

Let A be a commutative noetherian ring with 1 andB a commutative
finitely generatedA-algebra, i.e.,B = A[X1, . . . ,XN]/( f1, . . . , fq), F =
( f1, . . . , fq). Then finding asolution in A to F(x) = 0, i.e., finding a
vectorx = (a1, . . . , aN) ∈ AN such that

fi(x) = 0 (1≤ i ≤ q),

is equivalent to finding a sectin for SpecB over SpecA.
Let J be the Jacobian matrix of thefi ’s defined by

J =



∂ f1
∂X1

. . .
∂ f1
∂XN

...
∂ fq
∂XN

∂ fq
∂XN



(q× N) matrix.

We recall that at a pointz ∈ SpecB ֒→ AN represented by a prime
idealP in A[X1, . . . ,XN], SpecB is smoothover SpecA atz if and only
if: There is a subset (a) = (a1, . . . , ap) of (1, 2, . . . , q) such that

65
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(i) there exists a (p× p) minor M of the (p×N) matrix
∂ fai

∂X j
such that

M . 0(modP), and

(ii) ( f1, . . . , fq) and (fa1, . . . , fap) generate the same ideal atz.

If the conditions (i) and (ii) are satisfied atz, then SpecB is of rela-
tive codimensionp in AN (i.e., relative to SpecA).

Let F(α) be the ideal (fa1, . . . , fap). The condition (ii) above is equiv-81

alent to the following: There is ag ∈ A[X1, . . . ,Xn] such thatz < V(g)
and

(F(a))g = (F)g.

(The subscriptg means localization with respect to the multiplicative set
generated byg. This implies thatgr (F) ⊂ (F(a)) for somer. Conversely
suppose given ag ∈ A[X1, . . . ,XN], such that

g(F) ⊂ F(a)

(i.e.,g ∈ conductor ofF in Fa, (F(a) : F)).
Then at all pointsz ∈ SpecB such thatg(z) , 0, (F) andF(a) gener-

ate the same ideal (sinceF(a) ⊂ F). Hence the condition (ii) above can
be expressed as:

(ii) There is an elementg ∈ K(a) = conductor ofF in F(a) (i.e., the
set of elementsg such thatgF ⊂ F(a)) such thatg(z) , 0.

Let∆(a) = ideal generated by the determinants of the (p× p) minors

of the (p×N) matrix

(
∂ fai

∂X j

)
. Let H be the ideal inA[X1, . . . ,XN] defined

by

H =
∑

(a)

K(a)∆(a)

i.e., the ideal generated by the ideals{K(a)∆(a)} where (a) ranges over all
subsets of (1, . . . , q). Then we see that at a pointz ∈ SpecB ֒→ AN,
SpecB is smooth over SpecA⇔ H generates the unit ideal atz⇔ z <
V(H). Hence we conclude:

z ∈ SpecB is smoothover SpecA if and only if z < V(H) ∩ SpecB.
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2 Existence of solutions whenA is t-adically com-
plete

82
With the notations as in the above§ 80, we have

Theorem 2.1. Suppose further that A is complete with respect to the
(t)-adic topology,(t) = principal ideal generated by t∈ A (i.e., A =
lim←−−A/(t)n). Let I be an ideal in A. Then there is a positive integer q0

such that whenever

F(a) ≡ 0(mod tnI ), n ≥ n0, n > r

(i.e., fi(a) = 0(mod tnI ), ∀1 ≤ i ≤ q, n≥ n0, n > r) and

tr ∈ H(a)

(H(a) is the ideal in A generated by H evaluated at a, or equivalently,
the closed subscheme ofSpecA obtained as the inverse image of V(H)

by the sectionSpecA
s−→ AN defined by(a1, . . . , aN)), then we can find

(a′1, . . . , a
′
N) ∈ AN such that

F(a′) = 0 and a′ ≡ a(mod tn−r I ).

Remark 2.1.The conditiontr ∈ H(a) implies thatV((t)) ⊃ V(H(a)).
So the sections : SpecA ֒→ AN defined by (a1, . . . , aN) does not pass
throughV(H) except for the pointst = 0. Roughly speaking, the above
theorem says that a sectionsofAN

A over SpecA which is an approximate
section of SpecB over SpecA and not passing throughV(H) except over
t = 0 can be approximated by a true section of SpecB over SpecA.

Proof of Theorem 2.1.(1) We claim that it suffices to prove the follow-
ing: ∃h ∈ AN (represented as a column vector) such that

(*)


F(a) ≡ J(a)h(mod t2n−r I ), and

h ≡ 0(tn−r I ).

83
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To prove this claim we use the Taylor expansion

F(a− h) = F(a) − J(a)h+O(h2) (error terms quadratic inh).

Now h2 ∈ t2(n−r)I . We note further that

t2n−r I = tr · t2n−2r I ⊂ t(2n−2r)I .

We haveF(a) − J(a)h ∈ t2n−r I and hence

F(a) − J(a)h ∈ t2n−2r I ,

i.e., (∗) implies 
F(a− h) ∈ t2(n−r)I , and

h ∈ t(n−r)I .

Seta1 = a− h, a0 = a. Then this gives

F(a1) ∈ t2(n−r)I ,

a1 − a0 ∈ t(n−r)I .

Hence by iteration we can findai ∈ A such that

(i) F(ai ) ∈ t2
i (n−r)I , i ≥ 0, and

(ii) (ai − ai−1) ∈ t2
i−1(n−r)I , i ≥ 1.

Now by (ii), a′ = lim←−− ai exists, anda′ ≡ a(mod tn−r I ). Further (i)
implies thatF(a′) = 0. This completes the proof of the claim.

(2) We claim that it suffices to prove that there is a z∈ AN such that

tr F(a) ≡ J(a)z(mod t2nI ), and

z≡ 0(tnI ).

84

For, we see easily that there is anh ∈ AN such thattrh = z and
h ∈ tn−r I . Then, ifJ = JF denotes the Jacobian forF, we have

tr(F(a) − JF(a)h) ≡ 0(modt2nI ),
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h ≡ 0(modtn−r I ).

SettrF = G; then these relations can be expressed as

G(a) − JG(a)h ≡ 0(modt2nI ), and

h ≡ 0(modtn−r I ).

In particular we certainly have

(**)


G(a) − JG(a)h ≡ 0(modt2n−r I ), and

h ≡ 0(modtn−r I ).

These are just the same as the relations (∗) as in Step (1) above, with
F replaced byG. Hence we conclude (as forF) that there is ana′ such
that 

G(a′) = 0, and

a′ ≡ a(mod tn−r I ).

Thus we conclude that there is ana′ such that

tr F(a′) = 0, and

a′ ≡ a(mod tn−r I ).

Note thatF(a′) ∈ tn−r I since

F(a′) = F(a) + JF(a)(a′ − a)(mod t2(n−r)I )

andF(a) ∈ tnI . Thus we have

tr F(a′) = 0, and F(a′) ∈ tn−r I .

85

We would like to conclude thatF(a′) = 0; this may not be true;
however, we have

Lemma 2.1. Let Tq = {a ∈ A|tqa = 0} and let q0 be an integer such that
Tq0 = Tq0+1 = Tq0+2 = . . ., etc., (note that Tq ⊂ Tq′ for q′ ≥ q and A
being noetherian, the sequence T1 ⊂ T2 . . . terminates). Then

Ts∩ (tm)A = (0) for m≥ q0.
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Proof. Let a ∈ Tq0 ∩ tmA. Thena = tma′ = tq0(tm−q0a′). Sincetq0a = 0,
we havetn+q0a′ = 0. But by the choice ofq0, we have in facttq0a′ = 0.
Hencea = tq0tm−q0a′ = tm−q0tq0a′ = 0. This proves the lemma �

By the lemma if (n − r) ≥ q0, thentrF(a′) = 0, andF(a′) ∈ tn−r I
implies thatF(a′) = 0. Thus the claim (2) is proved.

(3) Let (β) = (β1, . . . , βp) denote a subset ofpelements of (1, . . . ,N).

Given (α) = (α1, . . . , αp) ⊂ (1, . . . , q), letδα,β, be thep×pminor

(
∂ fαi

∂Xα j

)

of the Jacobian matrixJ. Then we claim that it suffices to prove the fol-
lowing:

Givenk ∈ K(α) andδαβ ∈ ∆α (δαβ defined as above) then there exists
az≡ 0(modtnI ) such that

k(a)δαβ(a)F(a) ≡ G(a)z(mod t2nI ).

For, we havetr =
∑
α,β
λαβkα(a)δαβ(a). Then by hypothesis, givenkα

andδαβ, we havezαβ such thatzαβ = 0(modtnI ) and

kα(a)δαβ(a)F(a) ≡ J(a)zαβ(mod t2nI );

then we see that if we setz=
∑
αβ

λαβzαβ, we have86

tr · F(a) ≡ J(a)z(mod t2nI ), and

z≡ 0(modtnI ),

which is the claim (2).

(4) We can assume without loss of generality that (α) = (1, . . . , p)

and (β) = (1, . . . , p) so thatδα,β = detM whereM =

(
∂ fi
∂X j

)
,

1 ≤ i ≤ p
1 ≤ j ≤ p

.

Then we have

J =

[
M ∗
∗ ∗

]
.

Let N be the matrix formed by the determinants of the (p−1)×(p−1)
minors ofM so that we have

MN = δ · Id, δ = δαβ, α, β as above.
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We denote by
[

N
0

]
the (N × p) matrix by adding zeros toN.

Let k ∈ K(α), (α) as above andδ be as above.Then we claim that if
z is defined by

Z = k

[
N
0

]


f1
...

fp


, Z is an (N × 1) matrix;

then ifz= Z(a), we have

k(a)δ(a)F(a) ≡ J(a)z(mod t2nI ), and

z≡ 0(modtnI ).

By the foregoing, if we prove this claim, then the proof of thetheo-
rem would be completed.

To prove this claim, we observe that the relationz ≡ 0(modtnI ) is 87

immediate. Sincek ∈ K(α), (α) as above, we have

(I) k f j =

p∑

i=1

λi j fi , 1 ≤ j ≤ q.

This givesk
∂ f j

∂X1
=

p∑
i=1
λi j

∂ fi
∂X1

(modF), 1≤ j ≤ q.

Substituting (a), we get

k(a)
∂ f j

∂X1
(a) ≡

p∑

i=1

λi j
∂ fi
∂X1

(a)(modF(a))

≡
p∑

i=1

λi j (a)
∂ fi
∂X1

(a)(mod tnI ).

Let u ∈ AN be an element such thatu ≡ 0(modV), whereV is some
ideal ofA. Let v = J(a) · u ∈ AN. Then

k(a)v j = k(a)
N∑

ℓ=1

∂ f j

∂Xℓ
uℓ
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≡
N∑

ℓ=1


p∑

i=1

λi j (a)
∂ fi
∂X1

(a)

 uℓ(mod tnIV)

≡
p∑

i=1

λi j (a) ·


N∑

ℓ=1

∂xi

∂X1
(a)uℓ

 (mod tnIV)

≡
p∑

i=1

λi j (a)vi (modtnIV).

In other words,

(II) k(a)v j =

p∑

i=1

λi j (a)vi (mod tnIV), for 1 ≤ j ≤ q,

whereu ∈ AN, v = J(a)u, andu ≡ 0(modV).88

Now take foru ∈ AN andv the elements

u =

[
N
0

]


f1
...

fp


(a), v = J(a)

[
N(a)

0

]


f1(a)
...

fp(a)


.

Thenu ≡ 0(modtnI ) and we have

k(a)v j =

p∑

i=1

λi j (a)vi (modt2nI ).

Moreover,

v = J(a)

[
N(a)

0

]


f1(a)
...

fp(a)


=

[
M(a) ∗
∗ ∗

] [
N(a)

0

]


f1(a)
...

fp(a)



=

[
M N
∗ N

]
(a)



f1(a)
...

fp(a)


=



δ(a) f1(a)
...

δ(a) fp(a)
...

wp+1
...

wN
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Hencevi = δ(a) fi (a), 1 ≤ i ≤ p. By (II),

k(a)vi ≡
p∑

i=1

λi j (a)vi (mod t2nI ), so that

k(a)vi ≡
p∑

i=1

λi j (a) fi (a)δ(a)(mod t2nI ).

By (I),
p∑

i=1

λi j (a) fi(a)δ(a) = k(a)δ(a) f j (a).

Hence it follows that

k(a)J(a)

[
N
0

] [
fi
fp

]
≡ k(a)δ(a)

[
f1(a)
fq(a)

]
(modt2nI )

which is precisely the claim in Step (4) above. This completes the proof 89

of the theorem as remarked before.

Remark 2.2.A better proof of the theorem is along the following lines:
Introduce a set of relations forF so that we have an exact sequence

Pℓ
R−→ Pq F−→ P→ P/F → 0.

(Here F denotes


f1
...
fq

 as well as the ideal generated byfi and P =

A[X1, . . . ,XN], and R is the matrix of relations ofF; it has entries in
P.) In matrix notation, we haveF · R = 0. Differentiating with respect
to X1, we obtain

JR≡ 0(modF),

whereJ is the Jacobian matrix

(
∂ fi
∂X j

)
(it is anN× q matrix and is there-

fore the transpose of the matrixJ introduced in the theorem above). Let
P = P/F and defineJ, Rsimilarly. Then we obtain acomplex

(*) P
ℓ R−→ P

q J−→ P
N
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(or: Pℓ
R−→ Pq J−→ PN is acomplexmodF). It is not difficult to see that

at a pointx ∈ Spec(P/F), the complex (∗) is homotopic to the identity
(in particular, is exact), i.e., denoting by a subscriptx the localization at
x, there is a diagram

r j
xx ww

P
1
x

R // P
q
x

J // P
N
x , with Rr + jJ = Id

if and only if Spec(P/F) is smooth atx. For example, suppose that90

Spec(P/F) is smooth atx. Then we can assume without loss of gener-

ality that det

(
∂ fi
∂Xi

)
, 1≤i≤p

1≤ j≤p , is a unit inPx. From this it follows easily

that there is adirect summandQ1 ֒→ P
q
x, Q1 ≈ P

p
x such that Im(J) =

Im(J|Q1) andJ|Q1 : Q1 → Im(J) is an isomorphism (J|O1 denotes the
restriction toQ1). Indeed, we can takeQ1 to be the submodule gener-

ated by the firstp-coordinates. (Note we haveJ(ei ) =
N∑
ℓ=1

∂ fi
∂X1

ξ1, with

(ei) a basis ofP
q
, and (ξi) a basis ofP

N
). We see also that Im(R) is of

rank (q− p) and is a direct summand inP
q
. In fact the relations

f j =

p∑

i=1

λi j fi , j ≥ p+ 1

give elements of the form

ej =

p∑

i=1

λi j ei , j ≥ p+ 1,

in Im R. Suppose now
p∑

i=1
µi fi is a relation; then as we have seen before

(on relations for a complete intersection),µi ∈ ( f1, . . . , fi) so thatµi = 0.
Hence we conclude that (ImR) is precisely the submodule generated by

(ej −
p∑

j=1
λi j ei), j ≥ p + 1, which shows that ImR is of rank (q − p)

and is a direct summand inP
q
. Now we see easily that the complex(∗)
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is homotopic to the identity at xif and only if, (i) (∗) is exact and (ii)
Im R is a direct summand which admits a complementQ1 such thatJ|Q1

is an isomorphism and ImJ ≃ Im(J|Q1). Now we have checked these
conditions when Spec(P) is smooth atx. Conversely if (i) and (ii) are 91

satisfied (atx), it can be checked that Spec(P) is smooth atx.

Suppose more generally that we are given a complex

P
1 R−→ R

q J−→ P
N

(we keep the same notation). Then we can define an idealH in P
which measures the nonsplitting of the complex as follows:H is the
ideal generated by elementsh such that there are mapsr, j:

r j
xx xx

P
1 R // P

q J // P
N
, such thatRr+ jJ = Id.h.

It can be shown thatH is the following ideal: Take a (p× p) minor
M in J and a “complementary” (q− p) × (q− p) minor K in R (involv-
ing “complementary indices”); thenH is the ideal generated by the
elements (detM)(detK).

In our case, SpecP−V(H ) is the open subscheme of smooth points.
It follows then thatH and the idealH (H is the ideal defined before and
H denotes the image ofH in B = P/F) have the same radical. In our
case we have then

Rr+ jJ ≡ h̃(modF), for some h̃ ∈ P with image h in H .

Multiplying by F (whereF is a vector now), we have

FRr + F jJ ≡ Fh̃(modF2).

SinceFR= 0, this gives

F jJ ≡ Fh̃(modF2).

We have used the transposes of the originalJ; settingz = jtFt and
taking “evaluation ata”, we get 92
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h(a)F(a) ≡ J(a)z(mod t2nI ).

Now a power ofh is contained inH sinceH andH have the same
radical. This is the crucial step in the proof of the theorem above. Hence
from this the proof of the theorem follows easily.

Before going to the next theorem, let us recall the followingfacts
abouta-adic rings (cf. Serre,Algebre Locale, Chap. II, A). Let (A, a)
be a Zariski ring, i.e.,A is a noetherian ring, is an ideal contained in the
Jacobson radical RadA of A, andA is endowed with thea-adic topology,
i.e., a fundamental system of neighborhoods of 0 is formed byan. Since⋂
n
an = (0), it follows that this topology is Hausdorff. Let A denote

the a-adic completion. ThenA is noetherian. IfM is anA-module of
finite type we can consider thea-adic topology onM and similarly it
is Hausdorff and if M denotes thea-adic completion ofM, we have
M = M ⊗A A. In fact the functorM 7→ M is exact. Suppose now that
M = M. Then we note that any submoduleN of M is closedwith respect
to thea-adic topology (for, the quotient topology inM/N is thea-adic
topology and sinceM/N is of finite type anda ⊂ RadA, this topology is
Hausdorff and henceN is closed). IfA = A, i.e.,A is complete, then any
module of finite type is complete for the adic topology so thatwe don’t
have to assume further thatM = M.

Let A = A, M be as usual andt ∈ a. ThenM/tM is complete for the
a/ta-adic topology, for this is simply thea-adic topology onM/tM.

Let A = A andV be an ideal inA. Given anr, suppose that the
relation ar ⊂ V + am, m ≫ 0, holds. Thenar ⊂ V, for our relation
implies thatar (A/V) ⊂ ⋂

m
am(A/V). SinceA/V is Hausdorff for the93

a-adic topology, it follows thatar A/V = (0), which impliesar ⊂ V.

3 The case of a henselian pair(A, a)

Theorem 3.1. With the same notations for A, B as in the pages pre-
ceding Theorem 2.1, suppose further that(A, a) is a henselian pair1 (in

1Definition. By a henselian pairwe mean a ringA and an ideala ⊂ RadA (=
Jacobson radical ofA) such that givenF = ( f1, . . . , fN),N elements ofA[X1, . . . , XN]
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particular a ⊂ RadA), and thatA is thea-adic completion of A. Sup-

pose we are givena ∈ A
N

such that F(a) = 0 (i.e., a formal solution)
and ar · A (or briefly ar) ⊂ H(a) for some r. (This means that the sec-
tion of SpecB overSpecA whereB = A|X|/( fi) represented bya passes
through smooth points of the morphismSpecB → SpecA except over
V(a).) Then for all n≥ 1 (or equivalently for all n sufficiently large)
there is an a∈ AN such that F(a) = 0, and a≡ a(modan).

Proof. (1) Reduction to the casea principal.
Let a = (t1, . . . , tk). Let us try to prove the theorem by induction on

k. If k = 0, then the theorem is trivial. So assume the theorem proved
for (k − 1). We observe that the couple (A/tℓk, (t1, . . . , tk−1)) is again a
henselian pair∀ℓ ≥ 1 (heret1, . . . , tk−1 denote the canonical images of
ti in A/tℓk). Set t = tk and A1 = A/(tℓ). We note also that thea-adic 94

topology onA1 is the same as the (t1, . . . , tk−1) = a1-adic topology. IfA,
A1 denote the corresponding completions, we get a canonical surjective
homomorphismA→ A1 whose kernel istℓ ·A. Letb be the canonical im-
age ofa in A1. Then we haveF(b) = 0. Besides, we see thatas1 ⊂ H(b)
for somes (this follows from the fact thatV(H) ∩ SpecB = locus of
nonsmooth points for SpecB → SpecA and the set of smooth points
behaves well by base change and for us the base change isA → A1.
We canonot say thats = r, for the idealH (or ratherH(modB)) which
we have defined using the base ringA does not behave well with re-
spect to base change. The idealH does behave well with respect to
base change, and if we had used this ideal we could have got thesame
integers). Hence by induction hypothesis, for allm ≥ t, there exists a
b ∈ AN

1 such thatF(b) = 0, andb ≡ b(modaM1 ).
Lift b to an elementa1 ∈ AN and chooseℓ so thatℓ ≥ m. Then we

see that

a1 ≡ a(modam), and

F(a1) ≡ 0(mod (tℓ)).

andx0 ∈ An, x0 = (x0
1, . . . , x

0
N) such thatF(x0) ≡ 0mod (a) and such that det

(
∂ fi
∂Xj

)
|x0 is

invertible moda, then∃x ∈ AN, x ≡ x0mod (a) with F(x) = 0.
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(The fact thatb ≡ b(modam1 ) implies (a1−a)+ x ∈ am with x ∈ Ker(A→
A1) = (tℓ). Now t ∈ a, and if ℓ ≥ m, (t) ∈ am.) We claim that ifm≫ 0
(and consequentlyℓ ≫ 0), we havear ⊂ H(a1). By hypothesis we have
ar ⊂ H(a), and from the relationa1 ≡ a(modam), we get

a
r ⊂ H(a1) + am

(as ideals inA; to deduce this we use the Taylor expansion). Then, as we
remarked before the theorem form≫ 0, this implies thatar ⊂ H(a1).95

Sincet ∈ a it follows that tr ∈ H(a1).
Let At denote thet-adic completion. Then the following relations in

A,

for all ℓ ≥ 0, F(a1) ≡ 0(mod (tI ))

there existsa1 ∈ AN such thattr ∈ H(a1)

hold a fortiori in At, and hence by Theorem 2.1 we can finda′ ∈ AN
t

such that

F(a′) = 0, and

a′ ≡ a1(mod (tℓ−r )).

Note that the pair (A, (t)) is also henselian. Hence if the theorem
were true fork = 1, we would have

∀n,∃ a ∈ AN such thatF(a) = 0, and

a ≡ a′(modtnA).

But we have

a′ ≡ a1(mod (ts)At), for ssufficiently large, and

a1 ≡ a(am · A), m sufficiently large.

These implya ≡ a(modan) (sincet ∈ a andAt ⊂ A), which implies
the theorem. Hence we have only to prove the theorem in the casek = 1,
i.e.,a principal. �
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(2) A general lemma:

Lemma 3.2. Let A, B be as in the pages preceding the theorem, i.e., B=

A[X1, . . . ,XN]/( f1, . . . , fq), F = ( f1, . . . , f0). Let C be the symmetric
algebra on F/F2 over B, so thatSpecC is the conormal bundle over96

SpecB (F/F2 as a B-module is the conormal sheaf overSpecB). Let f ,
g, h denote the canonical morphisms

SpecC −→
f

SpecB −→
h

SpecA, g = h ◦ f .

Let V be the open subschemes ofSpecB whereSpecB→ SpecA is
smooth and V′ = f −1(V). Then we have the following:

(a) g : SpecC→ SpecA is smooth and of relative dimension N (over
A) on V′ and

(b) ∃ an imbeddingSpecC ֒→ A2N+q
A (A-morphism) such that the

restriction of the normal sheaf (for this imbedding) to every affine
open subset U֒→ V′ is trivial.

Proof of Lemma 3.2.We set

C = B[Y1, . . . ,Yq]/I

A[X,Y]/(F, I ), K = (F, I ).

OnV we have the exact sequence

(i) 0→ F/F2→ ΩA[X]/A ⊗A[X] B→ ΩB/A→ 0.

(This is an abuse of notation; strictly speaking we have to write
(F/F2)|V . . ., etc.) OnV we have the exact sequence

0→ f ∗(ΩB/A)→ ΩC/A→ ΩC/B→ 0, and(ii)

ΩC/B ≈ f ∗(F/F2).

Taking f ∗ of the first sequence, we get sequences 97

0→ f ∗(F/F2)→ (Free)→ f ∗(ΩB/A)→ 0
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0→ f ∗(ΩB/A)→ ΩC/A→ f ∗(F/F2)→ 0

which are exact on any affine open setU in V′. These exact sequences
are split onU, so that we conclude

ΩC/A is free on U.

OnV′ we have the exact sequence

0→ K/K2→ ΩA[X,Y]/A ⊗A[X,Y] C→ ΩC/A→ 0.

Thus it follows that onU

K/K2 ⊕ (Free)︸︷︷︸
of rankN

= (Free)

(From the exact sequence (ii) it follows thatΩC/A is of rankN overC and
this implies the assertion (a).) If we introduceN more indeterminates
Z1, . . . ,ZN, then

(*) C = A[X,Y,Z1, . . . ,Zn]/(K,Z1, . . . ,Zn).

Let K′ = (K,Z1, . . . ,ZN). Then we see easily that

K′/K′2 = K/K2 ⊕ (Free ofrk N).

It follows that K′/K′2 is free on U. Thus for the embedding
SpecC ֒→ A2N+q

A , the restriction of the normal bundleK′/K′2 to U
is trivial. This completes the proof of the lemma.

(3) We saw in (1) above, that for the theorem it suffices to prove it98

in the casea = (t). The conditionarA ⊂ H(a) becomestr ∈ H(a). (Note
that H(a) is the ideal inA generated by evaluating ata elements ofH
andH is an ideal in A[X1, . . . ,XN] not in A[X1, . . . ,XN].)

We claim now that there is an h∈ H such that

h(a) = (unit) · tr .

A priori it is clear there is anh ∈ H · A[X] such thath(a) = tr . Since
A is thet-adic completion ofA, we can find anh ∈ H such that

h ≡ h(mod (tr+1))
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(i.e., the coefficients ofh and h differ respectively by an element of
(tr+1)). This implies that

h(a) − h(a) = ∗tr+1, hence

h(a) = tr (1+ ∗t).

Now (1+ ∗t) is a unit inA. This proves the required claim.

(4) The final step.
Since SpecC is a vector bundle over SpecB, we have the 0-section

SpecC
x→ SpecB. We are givena ∈ A

N
such thatF(a) = 0. Now a

determines a section of Spec(B⊗AA) overA, or equivalently a morphism
s : SpecA→ SpecB forming a commutative diagram

SpecA
s //

$$I
IIIIIIII

SpecB

zzuuu
uu

uu
uu

u

SpecA

Using the 0-section,s can be lifted to a morphisms1 : SpecA → 99

SpecC:

SpecA
s1 //

$$I
IIIIIIII

SpecC

zzuuu
uu

uu
uu

u

SpecA

Now by (3), s1 carries (SpecA − V(t)) to SpecC[1/h], whereh is
as in (3) (hereh denotes the canonical image inC of theh in (3)). We
observe that

SpecC[1/h] ⊂ V′,

(V′ = f −1(V), V = locus of smooth points of SpecB→ SpecA) andV′

is contained in the locus of smooth points of the map SpecC→ SpecA.
We haveC = A[X,Y,Z]/K′ whereK′ = (F, I ,Z1, . . . ,ZN). The section

s1 defines a solutionK′(a′) = 0, wherea′ ∈ A
2N+q

(a′ extends the
sectiona). We havetk ∈ H(a′) for a suitablek. Hence the conditions,
similar to those of SpecB → SpecA, are now satisfied for the map
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SpecC→ SpecA. It is immediately seen that it suffices to solve for the
case SpecC → SpecA, in fact if we get a solutiona′ ∈ A2N+q, we have
to take for a the firstN coordinates ofa′.

Let U = SpecC[1/h]. Then the restriction of the normal bundle of
the imbedding SpecC ֒→ A2N+q

A is trivial on U and,U being smooth
over A, it follows easily thatU is open in a global complete intersec-
tion. By this we mean there existg1, . . . , gN+q ∈ A[X,Y,Z] such that
V(g1, . . . , gN+q) has dimensionN and we have an open immersion

(SpecC[1/t]) = SpecC[1/h] ֒→ SpecA[X,Y,Z]/(g1, . . . , gn+q).

Let G = (g1, . . . , gN+q). Then we have

K′t = Gt.

(We denote the localization with respect tot by a subscript. Note that100

localization with respect tot is the same as localization with respect to

b.) The given solutiona′ in A
2N+q

is such thatK′(a′) gives rise to a
solution G(a′) = 0 by changing thegi , multiplying them by suitable
powers oft. Conversely, suppose we have solved the problem forG,
i.e., we have founda′ ∈ A2N+q such thatG(a) = 0 anda′ ≡ a(modtn).
Then we see easily that there is aθ such that

tθ · F(a′) = 0.

Since F(a) = 0 by Taylor expansion, it follows thatF(a′) ≡ 0
(modtn). Now if n ≫ 0, by Lemma 2.1, it follows thatF(a′) = 0.
Thus it suffices to solve the problem forG, i.e., for the morphism

SpecC′ → SpecA, C′ = A[X,Y,Z]/G.

We have seen thata′ defines a section of this having the required
properties. Further, SpecC′ is a global complete intersection and
smooth overA in A2N+q, i.e., we have reduced the theorem to the fol-
lowing lemma.
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4 Tougeron’s lemma

Lemma 4.1. Let (A, a) be a henselian pair and fi ∈ A[Y1, . . . ,YN], 1 ≤
i ≤ m. Let J=

(
∂ fi
∂Yj

)
be the Jacobian matrix,1 ≤ i ≤ m, 1 ≤ j ≤ N.

Suppose we are given y0 = (y0
1, . . . , y

0
N) ∈ AN such that

f (y0) ≡ 0(mod∆2V)

where V(V) = V(a) (or ⇔ V is also a defining ideal for(A, a)) and
∆ is the annihilator of the A-module C presented by the relation matrix 101

(i.e., C is the cokernel of the homomorphism AN → Am whose matrix is
J(y0)). Then there is a y∈ AN such that

f (y) = 0 and y≡ y0(mod∆V).

Proof. The henselian property of (A, a) is used in the following man-
ner: Let F = (F1, . . . , FN) be N elements ofA[Y1, . . . ,YN] and y0 =

(y0
1, . . . , y

0
N) ∈ AN such that

(i) F(y0) ≡ 0(moda)

(ii) det

(
∂Fi

∂Yj

)

y=y0

is aunit (moda).(P)

Then there is ay ∈ AN such thatF(y) = 0 andy ≡ y0(moda).
Let δ1, . . . , δr generate the annihilator of∆. This implies that there

existN ×m matrices such that

JNi = δi I , J = J(y0), I = Id(m×m).

Write

f (y0) =
∑

i, j

δiδ jǫi j ,

ǫi j = (ǫi j1, . . . , ǫi jν, . . . , ǫi jm), ǫi j ∈ V
ց

mcomponents.
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We try to solve the equations

f

y0 +

r∑

i=1

δiUi

 = 0

for elementsUi = (Uil , . . . ,UiN) ∈ AN (we consider vectors inAn to
be column matrices). Expansion by Taylor’s formula in vector notation102

gives
0 = f (y0) + J · (

∑
δiUi) +

∑

i, j

δiδ jQi j ,

where

J is an (m× N) matrix,

f (y0) is an (m× 1) matrix,

Ui is an (N × 1) matrix (not (1× N) matrix as it is written),

and
Qi j , ǫi j are (m× 1) matrices.

Expanding, we get

0 = J · (
r∑

i=1

δiUi)

︸     ︷︷     ︸
(m×N)(N×1) matrix

+
∑

i, j

δiδ j (Qi j + ǫi j )︸     ︷︷     ︸
(m×1) matrix

=

r∑

i=1

δi(JUi) +
∑

i, j

δi · JNj · (Qi j + ǫi j ) (δ j Id = JNj)

=

r∑

i=1

(δi J) · Ui +
∑

i

δi J(
∑

J

N j(Qi j + ǫi j )) (δi are scalars).

Thus it suffices to solve ther equations

(*) 0 = Ui +
∑

j

N j(Qi j + ǫi j ), 1 ≤ i ≤ r.

This is an equation for an (N×1) matrix. Thus (∗) givesNr equations
in the Nr unknowns Uiν, 1 ≤ i ≤ r, 1 ≤ ν ≤ N.
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We note thatQi j are vectors of polynomials inUiν all of whose terms
are of degree≥ 2. Let F = F1, . . . , FNR ∈ A[Uiν] represent the right
hand side of (∗). Write Z1, . . . ,ZNr for the indeterminatesUiν. Then

(
∂Fk

∂Zℓ

)
= Id + M, M = (mαβ), (Nr × Nr) matrix

where M is an Nr× Nr matrix of polynomials in Zℓ and every mαβ has 103

no constant term.
Let x0 ∈ ANr represent the vector (0, . . . , 0); then we have

F(z0) ≡ 0(modV) since ǫi jν ∈ V.

Without loss of generality we can supposeV = a sinceV is also a
defining ideal for (A, a)

F(Z0) ≡ 0(moda).

Further, we have

(
∂Fk

∂Z1

)

Z=z0

is a unit inA/a. Hence by the henselian

property of (A, a), we have a solutionz of (∗) in A such thatz ≡ z0

(moda), i.e.,z≡ 0(moda) sincez0 ≡ (0). Set

y = y0 + z.

Then we have

y ≡ y0(mod∆a) and f (y) = 0,

which proves the lemma. �

Remark 4.1. It is possible to takeV such thatV ⊂ ar , for if (A, a) is
a henselian pair, the henselian property is true forV,V ⊂ a. Then the
above proof also goes through for this case.

Corollary. Let (A, a) be a henselian pair and

f1, . . . , fm ∈ A[y1, . . . , yN]
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andϕ the canonical morphism

ϕ : SpecA[y1, . . . , yN/( f1, . . . , fm)→ SpecA

B

Suppose thatϕ is smooth and a relative complete intersection. Then104

giveny ∈ Â (a-adic completion of A) such that

f (y) = 0,

there is a y∈ A such that f(y) = 0 and

y ≡ y(modac)

for any given c≥ 1.

Proof. We can takec = 1 for ac is also a defining ideal for (A, a). We
cana fortiori find y0 ∈ AN such that

f (y0) ≡ 0(moda)(⇐ f (y) = 0).

y0 then definesB a section of Spec(B) over SpecA/a. The morphism is a
complete intersection and smooth at points of this section.This implies
that the Ideal generated by canonical images inA/a of the determinants
of the (m×m) minors ofJ(y0) is the unit ideal inA/a, i.e., the canonical
image of∆ in A/a is the unit ideal. Sincea is in the Jacobson radical,
it follows that∆ is itself the unit ideal. Indeed∆ being the unit ideal in
A/a implies there exists au ∈ ∆ such thatu ≡ 1(moda), henceu−1 ∈ a,
henceu = 1+ r, r ∈ a. Sincea ⊂ RadA, u is a unit inA. �

5 Existence of algebraic deformations of isolated
singularities

Definition 5.1. A family of isolated singularities is a schemeX
π−→ S

overS = SpecA, A a k-algebra such that (i)π is flat, of finite presenta-
tion andX is affine, X = SpecO and (ii) if Γ is the closed subset ofX
whereπ is not smooth, thenΓ → S is afinite morphism(for this let us
say thatΓ is endowed with the canonical structure of a reduced scheme).
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Definition 5.2. We say that two familiesX→ S andX′ → S of isolated 105

singularities areequivalentor isomorphicif there is a family of isolated
singularitiesX′′ → S (note thatS is the same) and étale morphisms
X′′ → X′, X′′ → X such that

(i) the following diagram is commutative

X′′

étale

~~}}
}}

}}
}} étale

!!B
BB

BB
BB

B

��

X

  A
AA

AA
AA

A X′

}}||
||

||
||

S

and

(ii) these maps induce isomorphisms

Γ′′

∼

~~~~
~~

~~
~~ ∼

!!B
BB

BB
BB

B

Γ Γ′.

An equivalence class of isolated singularities represented by X→ S
is therefore thehenselization of X alongΓ.

Consider in particular a one point “family” X0 → Speck with an
isolated singularity.(We could also take a finite number of isolated sin-
gularities.) We see easily that the formal deformation space ofX0 (in the
sense of Schlessinger defined before) depends only on the equivalence
class ofX0. Let A be theformal versal deformation spaceassociated
to X0 (we can speak of the versal deformation space ofX0 by taking
Zariski tangent space ofA = dimT1

X0
), i.e., A is a complete local ring,

and we are given a sequence{Xn} of deformations overAn

Xn = SpecOn, An = A/mn+1
A , OA ⊗ An−1 � On−1

satisfying the versal property mentioned before. Note thatby a versal
deformation it is not meant that there is a deformation ofX0 overA. The 106
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following theorem, proved by Elkik, asserts that in fact a deformation of
X0 overA does exist (i.e., in the case of isolated singularities). Itis the
crucial step for the existence of “algebraic” versal deformations forX0.

Theorem 5.1. Let X0 = SpecO0, O0 = k[X1, . . . ,Xm]/( f ), ( f ) = ( f1,
. . . , fr). Let Xn = SpecOn be as above, but we suppose moreover that X0

is equidimensional of dimension d. Then there is a deformation X′ over
A such that X′ ⊗ An ≈ On, and if X′ = SpecO′ thenO′ is an A-algebra
of finite type. (We do not claim thatO′ has the same presentation as
O0.)

Proof. Let O = lim←−−On, On = An[X1, . . . ,Xm]/( f (n)), where f (n)
i ∈

An[X] is a lifting of fi ∈ k[X]. Let A[X]∧ denote them-adic (m = mA)
completion ofA[X]. We see thatA[X] is the set of formal power series∑

aiX(i) such thatai → 0 in them-adic topology ofA. Then f i = lim f (n)
i

is in A[X] and we see easily that

O = A[X]∧/( f ).

(For, we see that we have a canonical homomorphism

α : A[X]∧/( f )→ O

obtained from the canonical homomorphismA[X]∧/( f )→ An[X]/( f (n)).
It is easy to see thatα is an isomorphism.)

The proof of the theorem is divided into the following steps:

(1) It is enough to find a (flat) deformation X′′ over A of X0 such that
O′′ ⊗A A1 ≈ O1, where X′′ = SpecO′′ (recall that A1 = A/m2).107

For, given a (flat) deformationX′′ over A we get deformations
{X′′n } = X′′ ⊗ An overAn. For eachn, we get then by the versal property
of A, a homomorphism

αn : A→ An.

Note thatαn is defined by

(αn)m : Am→ An, m≫ 0,
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so thatXm⊗Am An ≈ X′′n . These{αn} are consistent and hence{an} patch
up to define a homomorphism of rings

α : A→ A.

The hypothesis thatO′′ ⊗A A1 ≈ O1 implies that

α ≡ Id(modm2
A).

This condition onα implies thatα is an isomorphism; for it follows
that α induces an isomorphism on the Zariski tangent spaces, so that
Imα contains a set of generators ofmA, henceα is surjective; further,
this condition implies that the induced homomorphismsαn : A/mn

A →
A/mn

A are surjective, and these vector spaces being finite-dimensional,
it follows thatαn is an isomorphism for alln (in particular injective). It
follows easily that Kerα ⊂ ⋂

n
mn

A = (0), i.e.,α is injective. Henceα is

an isomorphism.
Now define the deformationX′ overA as the pull back ofX′′ overA

by the isomorphismα − 1. It is easily checked thatX′ ⊗A An ≈ Xn, and
this proves (1).

Let us setX = SpecO . Consider the Jacobian matrixJ =


∂ f i

∂X j



1 ≤ i ≤ r, 1 ≤ j ≤ m (( f ) = ( f 1, . . . , f r )). Let Γ denote the locus 108

of points in X = SpecO whererk J < (m− d). ThenΓ is a closed

subschemein X. (We note thatf i ∈ A[X]∧ and
∂ f i

∂X j
∈ A[X]∧ so that

the Jacobian matrixJ is a matrix of elements isA[X]∧.) Hence ifx ∈
SpecA[X]∧ (in particular if x ∈ SpecO = X ֒→ A[X]), we can talk of
the rank ofJ at x, i.e., the matrixJ(x) whose elements are the canonical
images ink(x) (residue field atx) of the elements ofJ. It follows then
easily that the locus of pointsx of X whereJ(x) is of rank< (m− d) is
closed inX; in fact we see thatΓ = V(I ) whereI is the ideal generated
by the determinants of all the (m − d) × (m − d) minors of J′ where
J′ is J with elements replaced by their canonical images inO . It is
clear thatΓ ∩ X0 is precisely the set of singular points ofX0, which
is by our hypothesis a finite subset ofX0. It can then be seen without
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much difficulty thatΓ is finite over A(Γ is endowed with the canonical
structure of a reduced scheme or a scheme structure from the ideal I
introduced above). The proof of this is similar to the fact: quasifinite
implies finite in the “formal case”, i.e., in the situationA→ B whereA,
B are complete local rings andB is the completion of a local ring of an
A-algebra of finite type.

LetΓ = SpecO/∆ and let∆0 be the ideal inO0 defined by∆ (i.e., the
canonical image of∆ ⊗ k in O0). By the Noether Normalization lemma
we can findy0

1, . . . , y
0
d in ∆0 such thatO0 is a finitek[y0

1, . . . , y
0d] module

such that the set of common zeros ofy0
i is precisely the set of singular

points ofX0. Lift y0
i to elementsy1, . . . , yd in ∆ so thaty1, . . . , yd vanish

onΓ. Then we have

(2) O is a finite A[y]∧ module(andΓ is precisely the locus ofyi = 0).109

This is again obtained by an argument generalizing “quasifinite im-
plies finite in the “formal” cases.”

(3) The open subschemeX − Γ of X is regular (over A) (i.e.,X − Γ is
flat over A and the fibres are regular).

This is a generalization of the Jacobian criterion of regularity to the
adic and formal case.

(4) Outside the set{y = 0} in SpecA[y]∧ (this is a section ofSpec
A[y]∧ over SpecA and Γ lies over this set),O is locally free
over A[y]∧ say of rank r, i.e., p∗(OX−Γ) is a locally free sheaf
of OSpecA[y]∧−{yi=0} modules (p: X → SpecA[y]∧ canonical mor-
phism).

For, p∗(OX) is finite over SpecA[y]∧. Now SpecA[y]∧ is regular
over SpecA. We have seen thatX − Γ is regular over SpecA, so that it
is in particular Cohen-Macaulay over SpecA. Now a Cohen-Macaulay
moduleM (of finite type) over a regular local ringB is free (cf. Serre’s
“Algèbre locale”) and from this (4) follows. (We can use this property
only for the corresponding fibres, but then the required property is an
easy consequence of this.)
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(5) SetP̂ = A[y]∧. Then forO considered as âP module we have a
representation of the form

P̂m (ai j )−−−→ P̂n→ O → 0 (exact aŝP modules)

with rk(ai j ) ≤ (n−r) (i.e., determinants of all minors ofrk(n−r+1)
of (ai j ) are zero).

More generally, let us try to describe anR-algebra Bhaving a rep- 110

resentation of the form

(*)


Rm

(ai j )−−−→ Rn→ B→ 0 exact sequence

rk(ai j ) ≤ (n− r). of R-modules

The we have �

Lemma 5.1. ∃ an affine scheme V (of finite type) overSpecZ such that
every R-algebra of the form(∗) is induced by an R-valued point of V.

Proof of Lemma. To eachR we consider the functorF(R)

F(R) =

{
set of all commutativeR-algebrasB
with a representation of the form (∗)

}
.

One would like to represent the functorF by an affine scheme, etc.
We don’t succeed in doing this, but we will represent a functor G such
that we have asurjectivemorphismG→ F.

An algebra structure onB is given by anR-homomorphism

B⊗R B→ B.

Then in the diagram

Rn ⊗ RRn //

∃
��

B⊗R B

��
Rn // B
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the homomorphismRn ⊗R Rn → Rn factors via a homomorphismRm ⊗
Rn → Rn (of course not uniquely determined). Now the following se-
quence

(Rm⊗R Rn) ⊕ (Rn ⊗ Rm)
ψ
−→ Rn ⊗ Rn→ B⊗ B→ 0

is exact whereψ = (ai j ) ⊗ Id ⊕ Id ⊗ (ai j ). [We have111

(Ker(Rn→ B)⊗Rn)⊕ (Rn⊗ (KerRn→ B))
can hom−−−−−−→ Ker(Rn⊗Rn→ B⊗B)→ 0.

This implies exactness of the given diagram.] Again there exists a lift-
ing of the above commutative diagram

(I0)

(Rm⊗ Rn) ⊕ (Rn ⊗ Rm)

c∃
��

ψ // Rn ⊗ Rn //

b∃
��

B⊗R B // 0

Rm
(ai j )=a

// Rn // B // 0

On the other hand, giving a commutative diagram

(I )

(Rm ⊗ Rn) ⊕ (Rn ⊗ Rm)

c
��

ψ // Rn ⊗ Rn

b
��

Rm
(ai j )=(a)

// Rn

whereψ = (ai j ) ⊗ Id ⊕ Id ⊗ (ai j ) determines the commutative diagram
(I0).

The algebra structure onB induced by (I0) is associative if the dia-
gram

Rn ⊗ Rn ⊗ Rn

Id⊗b &&LLLLLLLLLL

b·(Id⊗b) // Rn

Rn ⊗ Rn
b

>>||||||||
,

Rn ⊗ Rn ⊗ Rn

b⊗Id &&LLLLLLLLLL

b·(b⊗Id) // Rn

Rn ⊗ Rn
b

>>||||||||
,

and the mapRn ⊗ Rn ⊗ Rnb·(Id⊗b)−b·(b⊗Id) → Rn factorizes throughRm→
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Rn, i.e.,

(II)
Rn ⊗ Rn ⊗ Rn

∃α &&LLLLLLLLLLL

b·(Id⊗b)−b·(b⊗Id) // Rn

Rm
(ai j )=a

==||||||||

or, b · (Id⊗b) − b · (b⊗ Id) is zero inB.
Let b̃ : Rn × Rn → Rn be the homomorphism obtained by changing112

b : Rn × Rn → Rn by the involution defined byx⊗ y 7→ y⊗ x in R⊗ R.
Then the algebra structure is commutative if there is a homomorphism
δ : Rn ⊗R Rn→ Rm such that

(III)

Rn ⊗R Rn

δ $$I
IIIIIIII

b−b // Rn

Rm
(ai j )=a

>>||||||||

commutes.
Finally the identity element 1∈ B can be lifted to an elemente∈ Rn

(determines a homomorphismR→ Rn) and there is a mapǫ : Rn→ Rm

such

(IV)

Rne⊗ b− Id

ǫ
%%LLLLLLLLLL

// Rn

Rm
a=(ai j )

==||||||||

commutes, i.e.,e⊗ b− Id = 0 in B.
Let us then define the functorG : (Rings)→ (Sets) as follows:

G(R) =(i) Set of homomorphisms a: Rm→ Rn such thatrk a ≤ (n− r)
(i.e., determinants of all minors ofa of rk(n − r + 1) vanish),
together with(0)

(ii) Set of homomorphisms b, c

Rn ⊗ Rn

b
��

, (Rm⊗ Rn) ⊕ (Rn ⊗ Rm)

c
��

Rn Rm
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such that the following diagram is commutative:113

(I)

(Rm ⊗ Rn) ⊕ (Rn ⊗ Rm)

c
��

a⊗Id⊕ Id⊗a // Rn ⊗ Rn

b
��

Rm a // Rn

together with

(iii) an R-homomorphismα : Rn⊗Rn⊗Rn→ Rm such that the following
is commutative

(II)
Rn ⊗ Rn ⊗ Rn

&&LLLLLLLLLLL

bo(Id⊗b)−bo(b⊗Id) // Rn

Rm

a

==||||||||
,

and

(iv) an R-homomorphismδ : Rn ⊗ Rn→ Rm such that

(III)
Rn ⊗ Rn

δ $$H
HH

HH
HH

HH

b−b̃ // Rn

Rm

a

==||||||||

commutes, and

(v) anR-homomorphisme : R→ Rn andǫ : Rn→ Rm such that

(IV)

Rn

ǫ
!!B

BB
BB

BB
B

e⊗b−Id // Rn

Rm

a

==||||||||

commutes.

It is now easily seen thatG(R) can be identified with a subsetS ֒→
RP such that there exist polynomialsFi(X1, . . . ,Xp) over Z such that
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s = (s1, . . . , sp) ∈ S iff Fi(s1, . . . , sp) = 0, and the set{Fi} and p are
independent ofR. From this it is clear thatG(R) is represented by a114

schemeV of finite type overZ and sinceG(R) → F(R) is surjective,
Lemma 5.1 follows immediately.

It follows in particular thatO is represented bya homomorphism
ϕ : SpecP̂→ V(P̂ = A[y1, . . . , ym]∧).

(6) The image ofSpecP̂ − {y = 0} in V lies in the smooth locus of V
overSpecZ.

We have a representation

(*) P̂[z1, . . . , zs] → O → 0

(homomorphisms of rings and homomorphisms asP modules). Now
P̂[z1, . . . , zs] is regular over A andX − Γ is regular over SpecA − {y =
0}. Hence the immersionX ֒→ SpecP̂[z1, . . . , zs] ≃ As

P̂
, being anA-

morphisms, is a local complete intersection at every point of X − Γ (we
use the fact that a regular local ring which is the quotient ofanother
regular local ring is a complete intersection in the latter;we use this
fact for the corresponding local rings of the fibres and then lifting the
m-sequence, etc.). Now codimX in As

P̂
is s. Now take a closed point

x0 ∈ SpecP̂− {y = 0}. Then tensoring (∗) by k(x0) we get

k(x0)[z1, . . . , zs] → O ⊗P̂ k(x0)→ 0 exact.

Now SpecÔ ⊗P̂ k(x0) is precisely the fibre ofX overx0 for the mor-
phismX ֒→ SpecP̂. Weclaim that SpecO ⊗P̂ k(x0) is also a local com-
plete intersection ink(x0)[z1, . . . , zs] whereverx0 ∈ SpecP − {y = 0}
(it is a 0-dimensional subscheme of Speck(x0)[z1, . . . , zs] ֒→ A

s
k(x0)) 115

and in fact that SpecO ⊗P̂ R0 ֒→ SpecR0[z1, . . . , zs] is a morphism
of local complete intersectionover R0 for any base change SpecR →
SpecP̂−{y = 0} (i.e., flat and the fibres of the morphism over SpecR is a
local complete intersection). To prove this we note thatO⊗P̂R0 is locally
free (of rankr) (SpecR0→ SpecP̂− {y = 0}) and SpecR0[z1, . . . , zs] →
SpecR0 is a regular morphism. In particular a Cohen-Macaulay mor-
phism. Now the claim is an immediate consequence of
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Lemma 5.2. Let B, C, R be local rings such that B, C are R-algebras
flat over R and B is Cohen-Macaulay over R. Let f: B→ C be a sur-
jective (local) homomorphism of R-algebras such that C is a complete
intersection in B. Then for all R→ R0 → 0, the surjective homomor-
phism

B⊗ R0→ C ⊗ R0→ 0

(the morphismSpec(C⊗R0) ֒→ Spec(B⊗R0)) is a morphism of complete
intersection overSpecR0.

Proof. Since the flatness hypothesis is satisfied, it suffices to prove that
C ⊗ k is a complete intersection inB⊗ k(k = R/mR). Now we have

0→ I → B→ C→ 0 exact,

I = kerB→ C, andI = ( f1, . . . , fs), fi is anm-sequence inB. Now the
codimension ofC, Spec(C ⊗ k) in Spec(B⊗ k), is equal to the codimen-
sion of SpecC in SpecB, which is s. (This follows by flatness ofB, C
overR and the fact that flat implies equidimensional.) Letf i denote the116

canonical images offi in B⊗k. We have then (B⊗k)/( f 1, . . . , f s) = C⊗k.
Now (B⊗ k) is Cohen-Macaulay and the codimension of Spec(C⊗ k) in
Spec(B⊗ k) is s. It follows by Macaulay’s theorem thatf 1, . . . , f s is an
m-sequence inB⊗ k. This implies thatC ⊗ k is a complete intersection
in B⊗ k, and proves Lemma 5.2.

The complete intersection trick.We go back to the proof of (5). Let
λ : SpecR0 → SpecP̂ be a morphism such thatR0 is Artin local and
λ(SpecR0) ⊂ SpecP̂ − {y = 0}. Consider the morphism (ϕ ◦ λ) :
SpecR0 → V. Then (ϕ ◦ λ) defines anR0 algebraB which is a free
R0-module of rankr (in particular flat overR0), andB is a morphism
of local complete intersection overR0 (B is of relative dimension 0 over
R0). Let R → R0 → 0 be such that SpecR is an infinitesimal neigh-
borhood of SpecR0. Then the assertion (5) follows if we show that
(ϕ ◦ λ) : SpecR0→ V factors through SpecR→ V.

Now B is defined by

Rm
0

a0

−−→ Rn
0→ B→ 0,
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wherea0 = (a0
i j ). Now SpecB → SpecR0 is a morphism of local

complete intersection for a suitable imbedding and SpecB. It is clear
that SpecB → SpecR0 is in fact a morphism of global complete in-
tersection for the corresponding imbedding, for it is easily seen that a
0-dimensional closed subscheme ofAn

k which is a local complete inter-
section, is in fact a global intersection. We have seen in§ 4, Part 1, That
the functor of global deformations of a complete intersection is unob-
structed i.e., formally smooth.Hence there is aflat R-algebraB′ such 117

that B′ ⊗R R0 ≈ B. Hence the sequenceRm
0

a0−−→ Rn
0 → 0 can be lifted

to an exact sequenceRm a−→ Rn → B′ → 0; the proof of this is in spirit
analogous to imbedding a deformation (infinitesimal) ofX ֒→ An in the
same affine space. A homomorphism (Rn

0 → B) over R0 is given byn
elements inB. Hence this homomorphism can be lifted toRn→ B′ and
it becomes surjective. Now it is seen easily thatRm

0 → Rn
0 can be lifted

to Rm → Rn. It follows that determinants of all minors ofa of rank
(n− r + 1) vanish. Thus the relations (0) above can be lifted toR.

Consider the relations (I). We are ginveb0, c0 such that the following
diagram is commutative:

(Rm
0 ⊗ Rn

0) ⊕ (Rn
0 ⊗ Rm

0 )

c0

��

a0⊗Id⊕ Id⊗a0=ψ0 // Rn
0 ⊗ Rn

0

b0

��
Rm

0
a0 // Rn

0.

With the above lifting of (a0) to a we get
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(*)

(Rm ⊗ Rn) ⊕ (Rn ⊗ Rm)

c∃

��

a⊗Id⊕ Id⊗a // Rn ⊗ Rn

b ∃

���
�

�

�

�

�

can // B′ ⊗R B′ → 0

can

��

// 0

(B) (A)

Rm a // Rn // B // 0.
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The two rows are exact. We claimthat there is a b which lifts b0, and
such that the square(A) is commutative.In fact this is quite easy, for it
is clear that we can findb′ : Rn⊗Rn→ Rn such that (A) is commutative.
Let b′0 be the reduction modR0 of b′. Then we see that the composition
of the canonical mapRn

0→ B with b0 − b′0 is zero. Hence 118

b0(z) ≡ b′0(z) (mod Ima0, or KerRn
0→ B).

Now b0(z)−b′0(z) can be lifted to elements in Ima, so that taking for
{za} a canonical basis inRn→ Rn we defineb : Rn ⊗ Rn→ Rn

b(za) = b′(za) + θa,

whereθa ∈ Im a lifts b0(a) − b′0(z). It is now clear thatb lifts b0 and the
square (A) is commutative. This proves the claim.

By a similar argument as above there is ac such thatc reduces toc0

and the square (B) is commutative. (If necessary we can prolong to the
left the exact sequence of the second row in the diagram (*).)Thus it
follows that the relations inI can be lifted toR.

A similar argument shows thata0, δ0, e0 and ǫ0 which are given
representing the point SpecR0 → V can be lifted toR so that the di-
agrams (II), (III) and (IV) are still commutative. This means that the
SpecR0 → V can be lifted to anR-valued point ofV. As we remarked
before, the assertion (5) now follows.

We go back to the usual notations in the theorem. Then: (7)Let
a = mA(y1, . . . , yd) ideal in A[y]. ThenP̂ = A[y]∧ is also thea-adic
completion of A[y] (of courseP̂ is also the mA · (A[y])-adic completion
of A[y]).

The proof of this assertion is immediate for a convergent series
∑
i

fi,

fi ∈ A[y] in the a-adic topology is precisely one such that the coeffi-
cients of fi tend to zero in themA-adic topology and the degree of the
monomials→ ∞. This implies that a convergent series is precisely a119

formal power series in{yi} such that the coefficients (inA) tend to 0 in
the mA-adic topology. This is the description of̂P we had and (7) is
proved. (8) Now for the morphismϕ : SpecP̂ → V we have that the
image of SpeĉP − {y = 0} is in the smooth locus ofV overZ. We note
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that V(a) = (Speck[y]) ∪ {y = 0} (k residue field of A), i.e., V(a) con-
tains {y = 0} so that the image of SpeĉP − V(a) (by ϕ) is also in the
smooth locus ofV overZ. Now thea-adic completion ofA[y] is P̂. Let
P̃ denote the henselization of (P, a), P = A[y]. Now apply Theorem 2
proved above. Hence we can find an étale map SpecR→ SpecP which
is trivial overV(a) and morphismϕ′ : SpecR→ V (note thatP̂ is also
thea-adic completion of̃P) such that

ϕ′ ≡ ϕ(modN), for any givenN.

(Note that thea-adic (i.e.,aR-adic,a is not an ideal inR) completion of
R is alsoA|y|∧). Let O′ be theR-algebra defined byϕ′. Then we have
O ≡ O(modaN) (i.e.,O′/aN = O/aN). Now O′ becomes anA-algebra
and then we have

O
′ ≡ O(modmN

A)

for (mAR)N ⊃ aN. Take in particularN = 2. Thus we can find anR-
algebraO′ of finite type and consequently offinite type over Asuch
that

O
′ ≡ O(modm2

A).

Thus to conclude the proof of the theore, it suffices to prove thatO′

is flat overA.

(9) Choice ofO′ such thatO′ is flat/A.120

We had a presentation ofO as follows:

P̂m a−→ P̂n→ O → 0.

We claim that we have a presentation such that
(*)

P̂ℓ
θ−→ P̂m a−→ P̂n→ O → 0,

where a · θ = 0 and P̂m a−→ P̂n→ O → 0 is exact, and

P̂ℓ ⊗A kA
θ⊗kA−−−−→ P̂m⊗ kA

a⊗kA−−−−→ P̂n ⊗ kA→ O ⊗ kA→ 0 is exact,

wherekA = A/mA.
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This follows if we prove thatO is flat over A (cf., § 3, Part 1).
However, (*) can be established directly as follows: We can find an
exact sequence of the form

P̂ℓ ⊗ kA
θ0−→ P̂m⊗ kA

a0−−→ P̂n ⊗ kA→ O ⊗ kA→ 0.

(Note that SpecO ⊗ kA = X0 = SpecO0 is the scheme whose defor-
mation we are considering and thatXn = O ⊗ A/mn+1

A = SpecOn are
infinitesimal deformations ofX0.) The above exact sequence can be
lifted to anexact sequence

P̂ℓ ⊗ A/mn+1
A

θn−→ P̂m⊗ A/mn+1
A

an−−→ P̂n ⊗ A/mn+1
A → On→ 0

sinceOn is flat overA/mn+1
A . Passing to the limit, we have an exact

sequence

P̂ℓ ⊗ A/mn+1
A

θn−→ P̂m⊗ A/mn+1
A

an−−→ P̂n ⊗ A/mn+1
A → On→ 0

sinceOn is flat overA/mn+1
A . Passing to the limit, we have an exact

sequence

P̂ℓ
θ−→ Pm a−→ Pn→ O → 0

such thata · θ = 0, andP̂m a−→ Pn → O → 0 is exact. This proves the121

existence of (*).
Now define a functorG′ which is a modification ofG as follows:

G′(R) = Set of{θ, a, b, c, α, δ, e, ǫ wherea, b, c, α, δ, e, ǫ are as in defini-

tion of G(R); andθ is defined byRℓ
θ−→ Rm a−→ Rn with a · θ = 0}.

Then as in the case ofG(R), we see thatG′ is represented by a
schemeV′ of finite type overZ. The given representation forO as in
(∗) above gives rise to a morphismψ : SpecP → V′. We claim that as
in the case ofV, the image of SpecP− {y = 0} lies in the smooth locus
of V′. With the same notations forR, R0 as in the proof of the statement
for the caseV, it suffices to prove the following: Given

Rℓ0
θ0−→ Rm

0
a0−−→ Rn

0→ B→ 0
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such thata0 · θ0 = 0 andRm
0

a0−−→ Rn
0 → B→ 0 is exact, and a flat lifting

B′ over R (hence free overR), we have to lift this sequence toR (the
proof of the lifting of the quantities involved is the same asfor G(R)).
As we have seen before, forG(R) we have a lifting

Rm a−→ Rn→ B′ → 0.

Now Imθ0 are a set of relations. SinceB′ is flat overR these rela-
tions can also be lifted, i.e., we have a lifting

Rℓ
θ−→ Rm a−→ Rn→ B′ → 0

such thata · θ = 0 andRm a−→ Rn → B′ → is exact. This proves
the required claim and hence it followsψ(SpecP − {y = 0}) lies in the122

smooth locus (overZ) of V′.
Applying Theorem 2, we can find an étale SpecR→ SpecP, P =

A[y] and a morphismψ′ : SpecR→ V′ such that

ψ′ ≡ ψ(mod a2).

Let O′ be theR-algebra defined byψ′. Then as we have seen before,
we have

O
′ ≡ O(modm2

A).

We claim thatO′ is flat overA. For this we observe that we havea
fortiori

O
′ ≡ O(modmA).

This implies thatO′/mA · O′ = O/mAO ≈ O0. Let

P̂ℓ
θ′−→ P̂m a′−→ P̂n→ O

′ → 0

a′ ◦ θ′ = 0, P̂m→ P̂n→ P̂n→ O
′ → 0 exact

(I′)

be a representation ofO′. Recall we have the representation forO

(I) P̂ℓ
θ−→ P̂m a−→ P̂n→ O → 0︸                    ︷︷                    ︸

exact

, and a ◦ θ = 0.



5. Existence of algebraic deformations of isolated... 103

Now tensoring (I′) with A/mn
A yields

P̂ℓ⊗A/mn
A

θ′⊗A/mn
A−−−−−−−→ P̂m⊗ A/mn

A

a′⊗A/mn
A−−−−−−−→ P̂n ⊗ A/mn

A→ O
′ ⊗ Amn

A→ 0︸                                                               ︷︷                                                               ︸
exact

,

and
(a′ ⊗ A/mn

A) · (θ′ ⊗ A/mn
A) = 0.

We have (I ′)⊗A/mA = (I )⊗A/mA, as a consequence of the fact that123

O′ ≡ O(modmA). By (I ) I⊗A/mA is exact. This implies that (I ′)⊗A/mA

is exact. So we have that (I ′) ⊗ A/mA is exact, and (I ′) ⊗ A/mn
A has the

property, (a′ ⊗ A/mn
A) · (θ′ ⊗ A/mn

A) = 0 and

P̂m⊗ A/mn
A

a′⊗A/mn
A−−−−−−−→ P̂n ⊗ A/mn

A→ O
′ ⊗ A/mn

A→ 0,

for all n. This implies, as we saw in the first few lectures, thatO′⊗A/mn
A

is flat overA/mn
A for everyn.

Now O′ is anA-algebra of finite type and soO′ ⊗ A/mn
A flat over

A/mn
A for all n implies thatO′ is flat overA (cf. SGA exposes on flat-

ness).
The proof of the theorem is now complete. �

Remark 5.1.The fact thatO′ is flat over A can also be shown in a
different manner. This can be done using only the functorG (i.e.,V), but
a better approximation (i.e., better thanN = 2) for O′ may be needed.
This uses the following result of Hironaka: LetB be a complete local
ring, b ⊂ m an ideal inB andM a finite B-module locally free (of rank
r) outsideV(b). Then there is anN such that wheneverM′ is a finiteB-
module locally free of rankr outsideV(b) andM′ = M(modbN), then
M′ ≈ M. Take in our present caseB = A[[y]] so that we have

A

==
==

==
==

==
==

==
==

==
� � // A[y]∧ � � // A[[y]]

R
- 

<<yyyyyyyyy

A[y]
. �

==||||||||
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R étale overA[y] such thatA[y]/a ≈ R/a and that all the extensions are
faithfully flat. Take a coherent sheaf on SpecR; to verify that it is flat
over A it suffices to verify that its lifting to SpecA[[y]] is flat over A.124

Takeb to bea · A[[y]]. Then by taking a suitable approximation forO′

it follows that the liftings toA[[y]] of O′ andO are isomorphic. This
implies thatO ⊗ A/mn ≈ O′ ⊗ A/mn, hence thatO′ is flat overA, since
Spec(O ⊗ A/mn) = Xn is flat overA.
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