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Abstract

We prove that the moduli stack Mg,n of stable curves of genus g
with nmarked points is rigid, that is, has no infinitesimal deformations.
This confirms the first case of a principle proposed by Kapranov. It
can also be viewed as a version of Mostow rigidity for the mapping
class group.

1 Introduction

Kapranov has proposed the following informal statement [Kapranov97]. Given
a smooth variety X = X(0), consider the moduli space X(1) of varieties ob-
tained as deformations of X(0), the moduli space X(2) of deformations of
X(1), and so on. Then this process should stop after n = dimX steps, i.e.,
X(n) should be rigid (no infinitesimal deformations). Roughly speaking, one
thinks of X(1) as H1 of a sheaf of non-abelian groups on X(0). Indeed, at
least the tangent space to X(1) at [X] is identified with H1(TX), where TX

is the tangent sheaf, the sheaf of first order infinitesimal automorphisms of
X. Then one regards X(m) as a kind of non-Abelian Hm, and the analogy
with the usual definition of Abelian Hm suggests the statement above.

In particular, the moduli space of curves should be rigid. In this paper,
we verify this in the following precise form: the moduli stack of stable curves
of genus g with n marked points is rigid for each g and n.

On the other hand, moduli spaces of surfaces should have non-trivial
deformations in general. A simple example (for surfaces with boundary) is
given in Sec. 6. It seems plausible that there should be a non-trivial defor-
mation of a moduli space of surfaces whose fibres parametrise “generalised
surfaces” in some sense, for example non-commutative surfaces. From this
point of view the result of this paper says that the concept of a curve cannot
be deformed.
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Let us also note that our result can be thought of as a version of Mostow
rigidity for the mapping class group. Recall that the moduli space Mg of
smooth complex curves of genus g is the quotient of the Teichmüller space Tg

by the mapping class group Γg. The space Tg is a bounded domain in C3g−3,
which is homeomorphic to a ball, and Γg acts discontinuously on Tg with
finite stabilisers. We thus obtain Mg as a complex orbifold with orbifold
fundamental group Γg. The space Tg admits a natural metric, the Weil–
Petersson metric, which has negative holomorphic sectional curvatures. So,
roughly speaking, Mg looks like a quotient of a complex ball by a discrete
group Γ of isometries, with finite volume. Mostow rigidity predicts that such
a quotient is uniquely determined by the group Γ up to complex conjugation.
(This is certainly true if Γ acts freely with compact quotient, see [Siu80].)
In particular, it should have no infinitesimal deformations. Unfortunately I
do not know a proof along these lines.

Acknowledgements: We thank M. Kapranov for suggesting the problem and
subsequent encouragement. We also thank I. Dolgachev, G. Farkas, S. Gru-
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S.P. Smith and T. Stafford for helpful discussions. The author was partially
supported by NSF grant DMS-0650052.

2 Statements

We work over an algebraically closed field k of characteristic zero. Let g and
n be non-negative integers such that 2g − 2 + n > 0. Let Mg,n denote the
moduli stack of stable curves of genus g with n marked points. The stack
Mg,n is a smooth proper Deligne–Mumford stack of dimension 3g − 3 + n.

Theorem 2.1. The stack Mg,n is rigid, that is, has no infinitesimal defor-
mations.

Let ∂Mg,n ⊂ Mg,n denote the boundary of the moduli stack, that is,
the complement of the locus of smooth curves (with its reduced structure).
The locus ∂Mg,n is a normal crossing divisor in Mg,n.

Theorem 2.2. The pair (Mg,n, ∂Mg,n) has no locally trivial deformations.

Let Mg,n denote the coarse moduli space of the stack Mg,n. The space
Mg,n is a projective variety with quotient singularities.

Theorem 2.3. The variety Mg,n has no locally trivial deformations if (g, n) 6=
(1, 2), (2, 0), (2, 1), (3, 0).
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Remark 2.4. In the exceptional cases, the projection Mg,n →Mg,n is rami-
fied in codimension one over the interior of Mg,n, and an additional calcula-
tion is needed to relate the deformations of the stack and the deformations
of the coarse moduli space (cf. Prop. 5.2). Presumably the result still holds.

3 Proof of Theorem 2.2

Write B for the boundary of Mg,n. Let ΩMg,n
(logB) denote the sheaf of 1-

forms onMg,n with logarithmic poles along the boundary, and TMg,n
(− logB)

the dual of ΩMg,n
(logB). The sheaf TMg,n

(− logB) is the subsheaf of the
tangent sheaf TMg,n

consisting of vector fields on Mg,n which are tangent
to the boundary. In other words, it is the sheaf of first order infinites-
imal automorphisms of the pair (Mg,n,B). Hence the first order locally
trivial deformations of the pair (Mg,n,B) are identified with the space
H1(TMg,n

(− logB)). To prove Thm. 2.2, we show H1(TMg,n
(− logB)) = 0.

Let π : Ug,n → Mg,n denote the universal family over Mg,n. That is,
Ug,n is the stack of n-pointed stable curves of genus g together with an extra
section (with no smoothness condition). Let Σ denote the union of the n
tautological sections of π. We define the boundary BU of Ug,n as the union
of π∗B and Σ.

Let ν : Bν → B be the normalisation of the boundary B of Mg,n, and N
the normal bundle of the map Bν →Mg,n. Then we have an exact sequence

0 → TMg,n
(− logB) → TMg,n

→ ν∗N → 0.

Let ωπ denote the relative dualising sheaf of the morphism π.

Lemma 3.1. There is a natural isomorphism

δ : TMg,n
(− logB) ∼−→ R1π∗(ωπ(Σ)∨).

Proof. For a pointed stable curve (C,ΣC = x1 + · · ·+ xn), the space of first
order deformations is equal to Ext1(ΩC(ΣC),OC). See [DM69, p.79–82].
The surjection

Ext1(ΩC(ΣC),OC) → H0(Ext1(ΩC(ΣC),OC)) =
⊕

q∈Sing C

Ext1(ΩC(ΣC),OC)q

sends a global deformation of (C,ΣC) to the induced deformations of the
nodes. Étale locally at the point [(C,ΣC)] ∈ Mg,n, the boundary B is a
normal crossing divisor with components Bq indexed by the nodes q of C
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(the divisor Bq is the locus where the node q is not smoothed). The Kodaira–
Spencer map identifies the fibre of the normal bundle of Bq at [(C,ΣC)] with
the stalk of Ext1(ΩC(ΣC),OC) at q.

We now work globally over Mg,n. We omit the subscripts g, n for clarity.
Consider the exact sequence

0 → π∗ΩM → ΩU (log Σ) → ΩU/M(Σ) → 0. (1)

For a sheaf F on U , let Extiπ(F , ·) denote the ith right derived functor of
π∗ ◦ Hom(F , ·). Applying π∗ ◦ Hom(·,OU ) to the exact sequence (1), we
obtain a long exact sequence with connecting homomorphism

ρ : TM → Ext1π(ΩU/M(Σ),OU ).

The map ρ is the Kodaira–Spencer map for the universal family over M
and thus is an isomorphism. (Note that, for a point p = [(C,ΣC)] ∈M, the
base change map

Ext1π(ΩU/M(Σ),OU )⊗ k(p) → Ext1(ΩC(ΣC),OC)

is an isomorphism. Indeed, by relative duality [Kleiman80, Thm. 21], it
suffices to show that π∗(ΩU/M(Σ)⊗ ωπ) commutes with base change. This
follows from cohomology and base change.)

Consider the two exact sequences

0 → TM(− logB) → TM → ν∗N → 0

and

0 → R1π∗(ΩU/M(Σ)∨) → Ext1π(ΩU/M(Σ),OU ) → π∗ Ext1(ΩU/M(Σ),OU ) → 0

The Kodaira–Spencer map ρ identifies the middle terms, and induces an
identification of the right end terms determined by the deformations of the
singularities of the fibres of π. We thus obtain a natural isomorphism δ of
the left end terms. Finally, note that ΩU/M(Σ)∨ = ωπ(Σ)∨ because ωπ(Σ)
is invertible and agrees with ΩU/M(Σ) in codimension 1. This completes the
proof.

The line bundle ωπ(Σ) is ample on fibres of π. Hence π∗(ωπ(Σ)∨) = 0.
Also Riπ∗(ωπ(Σ)∨) = 0 for i > 1 by dimensions. So H i+1(ωπ(Σ)∨) =
H i(R1π∗(ωπ(Σ)∨)) for all i by the Leray spectral sequence. Hence the iso-
morphism δ induces an isomorphism

H i(TMg,n
(− logB)) ∼−→ H i+1(ωπ(Σ)∨) (2)
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for each i.
Let Ug,n denote the coarse moduli space of the stack Ug,n and p : Ug,n →

Ug,n the projection. The line bundle ωπ(Σ) on the stack Ug,n defines a Q-line
bundle pQ

∗ ωπ(Σ) on the coarse moduli space Ug,n (see Sec. 7). We use the
following important result, which is essentially due to Arakelov [Arakelov71,
Prop. 3.2, p. 1297]. We refer to [Keel99, Sec. 4] for the proof.

Theorem 3.2. The Q-line bundle pQ
∗ ωπ(Σ) is big and nef on Ug,n.

It follows by Kodaira vanishing (see Thm 7.1) that H i(ωπ(Σ)∨) = 0 for
i < dimUg,n. Combining with (2), we deduce

Proposition 3.3. H i(TMg,n
(− logB)) = 0 for i < dimMg,n.

In particular, H1(TMg,n
(− logB)) = 0 if dimMg,n > 1. The remaining

cases are easy to check. This completes the proof of Theorem 2.2.

4 Proof of Theorem 2.1

We now prove that Mg,n is rigid. Since Mg,n is a smooth Deligne–Mumford
stack, its first order infinitesimal deformations are identified with the space
H1(TMg,n

), and we must show that H1(TMg,n
) = 0. Consider the exact

sequence
0 → TMg,n

(− logB) → TMg,n
→ ν∗N → 0

and the associated long exact sequence of cohomology

· · · → H i(TMg,n
(− logB)) → H i(TMg,n

) → H i(N ) → · · ·

We prove below thatH i(N ) = 0 for i < dimB. NowH i(TMg,n
(− logB)) = 0

for i < dimMg,n by Prop. 3.3, so we deduce

Proposition 4.1. H i(TMg,n
) = 0 for i < dimMg,n − 1.

In particular, H1(TMg,n
) = 0 if dimMg,n > 2. In the remaining cases it

is easy to check that H1(N ) = 0, so again H1(TMg,n
) = 0.

The irreducible components of the normalisation Bν of the boundary
B of Mg,n are finite images of the following stacks [Knudsen83a, Def. 3.8,
Cor. 3.9]:

(1) Mg1,S1∪{n+1}×Mg2,S2∪{n+2} where g1+g2 = g and S1, S2 is a partition
of {1, . . . , n}.
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(2) Mg−1,n+2

Here Mh,S denotes the moduli stack of stable curves of genus h with marked
points labelled by a finite set S. In each case the map to Bν is given by
identifying the points labelled by n+1 and n+2. The map is an isomorphism
onto the component of Bν except in case (1) for g1 = g2 and n = 0 and case
(2), when it is étale of degree 2.

ForMh,S a moduli stack of pointed stable curves as above, let π : Uh,S →
Mh,S denote the universal family, and xi : Mh,S → Uh,S , i ∈ S, the tauto-
logical sections of π. Define ψi = x∗iωπ, the pullback of the relative dualising
sheaf of π along the section xi. The following result is well-known, see for
example [HMo98, Prop. 3.32].

Lemma 4.2. The pullback of N∨ to Mg1,S1∪{n+1} ×Mg2,S2∪{n+2} is iden-
tified with pr∗1 ψn+1 ⊗ pr∗2 ψn+2. Similiarly, the pullback of N∨ to Mg−1,n+2

is identified with ψn+1 ⊗ ψn+2.

There is an isomorphism of stacks c : Mg,n+1 → Ug,n which identifies the
morphism pn+1 : Mg,n+1 → Mg,n given by forgetting the last point with
the projection π : Ug,n →Mg,n [Knudsen83a, Sec. 1–2].

Lemma 4.3. [Knudsen83b, Thm. 4.1(d), p. 202] The line bundle ψn+1 on
Mg,n+1 is identified with the pullback of the line bundle ωπ(Σ) under the
isomorphism c : Mg,n+1 → Ug,n.

Corollary 4.4. The Q-line bundle on the coarse moduli space of Bν defined
by N∨ is big and nef on each component

Proof. This follows immediately from Lem. 4.2, Lem. 4.3, and Thm. 3.2.

We deduce that H i(N ) = 0 for i < dimB by Thm 7.1. This completes
the proof of Theorem 2.1.

5 Proof of Theorem 2.3

We first prove a basic result which relates the deformations of a smooth
Deligne–Mumford stack and its coarse moduli space.

Let X be a smooth proper Deligne–Mumford stack, X the coarse moduli
space of X , and p : X → X the projection. Let TX denote the tangent sheaf
of X . Let D ⊂ X be the union of the codimension one components of the
branch locus of p : X → X (with its reduced structure). Let TX(− logD)
denote the subsheaf of the tangent sheaf TX consisting of derivations which
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preserve the ideal sheaf of D. It is the sheaf of first order infinitesimal
automorphisms of the pair (X,D).

Lemma 5.1. p∗TX = TX(− logD)

Proof. The sheaves p∗TX and TX(− logD) satisfy Serre’s S2 condition, and
are identified over the locus where p is étale. So it suffices to work in
codimension 1. We reduce to the case X = [A1

x/µe], where µe 3 ζ : x 7→ ζx.
Then X = A1

x/µe = A1
y, where y = xe, and D = (y = 0) ⊂ X. Let

π : A1
x → A1

x/µe be the quotient map. We compute

p∗TX =
(
π∗OA1

x
· ∂
∂x

)µe

= OA1
y
· x ∂
∂x

= OA1
y
· y ∂
∂y

= TX(− logD),

as required.

Proposition 5.2. The first order deformations of the stack X are identified
with the first order locally trivial deformations of the pair (X,D).

Proof. By the Lemma, H1(TX ) = H1(p∗TX ) = H1(TX(− logD)).

We now apply this result to relate deformations of the stack Mg,n and
its coarse moduli space Mg,n.

A stable n-pointed curve of genus 0 has no non-trivial automorphisms.
Hence the stack M0,n is equal to its coarse moduli space M0,n, and M0,n is
rigid by Thm. 2.1. Also, recall that M1,1 is isomorphic to P1 and therefore
rigid. So, in the following, we assume that g 6= 0 and (g, n) 6= (1, 1).

Let D ⊂Mg,n be the component of the boundary whose general point is
a curve with two components of genus 1 and g − 1 meeting in a node, with
each of the n marked points on the component of genus g − 1. Note that
each point of D has a non-trivial automorphism given by the involution of
the component of genus 1 fixing the node. Let p : Mg,n → Mg,n be the
projection, and D ⊂Mg,n the coarse moduli space of D.

Lemma 5.3. [HMu82, §2] If g + n ≥ 4 then the automorphism group of
a general point of Mg,n is trivial, and the divisor D ⊂ Mg,n is the unique
codimension 1 component of the branch locus of p.

Assume g + n ≥ 4. Let ν : Dν → D denote the normalisation of D,
so Dν = M1,1 ×Mg−1,n+1. Let ND denote the normal bundle of the map
Dν →Mg,n.

Lemma 5.4. There is an exact sequence

0 → TMg,n
(− logD) → TMg,n

→ p∗ν∗N⊗2
D → 0.
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Proof. This is a straightforward calculation similar to [HMu82, Lemma,
p. 52].

We haveH1(TMg,n
(− logD)) = H1(TMg,n

) = 0 by Prop. 5.2 and Thm. 2.1.
Also H1(N⊗2

D ) = 0 by Thm. 7.1 because the Q-line bundle defined by N∨
D on

the coarse moduli space of Dν is big and nef by Cor. 4.4. So H1(TMg,n
) = 0

by Lem. 5.4, that is, Mg,n has no locally trivial deformations. This concludes
the proof of Thm. 2.3.

6 Nonrigidity of moduli of surfaces

We exhibit a moduli space of surfaces with boundary that is not rigid.
Let P1, . . . , P4 be 4 points in linear general position in P2. Let lij be

the line through Pi and Pj . Let l be a line through the point Q = l12 ∩ l34
such that l does not pass through l13 ∩ l24 or l14 ∩ l23 and is not equal to
l12 or l34. Let S → P2 be the blowup of the points P1, . . . , P4, Q, and B
the sum of the strict transforms of l and the lij and the exceptional curves.
Then (S,B) is a smooth surface with normal crossing boundary such that
KS + B is very ample. We fix an ordering B1, . . . , B12 of the components
of B. The moduli stack M of deformations of (S,B) is isomorphic to P1 \
{q1, . . . , q4} where the qi are distinct points. Indeed, it suffices to observe
that all deformations of (S,B) are obtained by the construction above. The
moduli space M has a modular compactification (M, ∂M), the Kollár–
Shepherd-Barron–Alexeev moduli stack of stable surfaces with boundary,
which is isomorphic to (P1,

∑
qi). In particular, the pair (M, ∂M) has

non-trivial deformations.

Remark 6.1. The compact moduli space M is an instance of the com-
pactifications of moduli spaces of hyperplane arrangements described in
[Lafforgue03] (cf. [HKT06]).

7 Appendix: Kodaira vanishing for stacks

Let X be a smooth proper Deligne–Mumford stack, X the coarse moduli
space of X , and p : X → X the projection. Étale locally on X, p : X → X
is of the form p : [U/G] → U/G, where U is a smooth affine variety and G is
a finite group acting on U [AV02, Lemma 2.2.3, p. 32]. A sheaf F on [U/G]
corresponds to a G-equivariant sheaf FU on U , and p∗F = (π∗FU )G, where
π : U → U/G is the quotient map.
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Let L be a line bundle on X . Let n ∈ N be sufficiently divisible so that
for each open patch [U/G] of X as above and point q ∈ U the stabilizer Gq

of q acts trivially on the fibre of L⊗n
U over q. Then the pushforward p∗(L⊗n)

is a line bundle on X. We define pQ
∗ L = 1

np∗(L
⊗n) ∈ Pic(X) ⊗ Q, and call

pQ
∗ L the Q-line bundle on X defined by L.

Theorem 7.1. Assume that the coarse moduli space X is an algebraic va-
riety. If the Q-line bundle pQ

∗ L on X is big and nef then H i(L∨) = 0 for
i < dimX .

Remark 7.2. If the coarse moduli space X is smooth then Thm. 7.1 follows
from [MO05, Thm. 2.1].

Theorem 7.1 is proved by reducing to the following generalisation of the
Kodaira vanishing theorem.

Theorem 7.3. [KM98, Thm. 2.70, p. 73] Let X be a proper normal variety
and ∆ a Q-divisor on X such that the pair (X,∆) is Kawamata log terminal
(klt). Let N be a Q-Cartier Weil divisor on X such that N ≡M +∆, where
M is a big and nef Q-Cartier Q-divisor. Then H i(X,OX(−N)) = 0 for
i < dimX.

Proof of Thm. 7.1. Observe first that X is a normal variety with quotient
singularities. Consider the sheaf p∗(L∨) on X. If the automorphism group
of a general point of X acts nontrivially on L, then p∗L∨ = 0, and so
H i(L∨) = H i(p∗L∨) = 0 for each i. Suppose now that the automorphism
group of a general point acts trivially on L. Then p∗L∨ is a rank 1 reflexive
sheaf on X. Write p∗L∨ = OX(−N), where N is a Weil divisor on X.
Let n ∈ N be sufficiently divisible so that pQ

∗ (L) = 1
np∗(L

⊗n) as above.
Let M be a Q-divisor corresponding to the Q-line bundle pQ

∗ L. There is a
natural map (p∗L∨)⊗n → p∗(L∨⊗n), i.e., a map OX(−nN) → OX(−nM),
which is an isomorphism over the locus where p is étale. So N ≡ M + ∆,
where ∆ is an effective Q-divisor supported on the branch locus of p. Let
D1, . . . , Dr be the codimension 1 components of the branch locus. Let ei
be the ramification index at Di, and ai the age of the line bundle L∨ along
Di. That is, after removing the automorphism group of a general point of
X , a transverse slice of X at a general point of Di is of the form [A1

x/µei ],
where µei 3 ζ : x 7→ ζ · x, and µei acts on the fibre of L∨ by the character
ζ 7→ ζ−ai , where 0 ≤ ai ≤ ei − 1. We compute that ∆ =

∑ ai
ei
Di.

We claim that (X,∆) is klt. Let ∆′ =
∑ ei−1

ei
Di, then KX = p∗(KX +

∆′), and X is smooth, so (X,∆′) is klt by [KM98, Prop. 5.20(4), p. 160].
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Now ∆ ≤ ∆′ and X is Q-factorial, so (X,∆) is also klt. We deduce that
H i(L∨) = H i(p∗L∨) = H i(OX(−N)) = 0 for i < dimX by Thm. 7.3.
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