(1) Let \(f : X \to Y \) be a non constant holomorphic map between compact Riemann surfaces. Show that \(f \) is surjective using point set topology. [Hint: \(f \) is an open mapping.]

(2) Recall Liouville’s theorem: a bounded holomorphic function \(f : \mathbb{C} \to \mathbb{C} \) is constant. Deduce that a global holomorphic function \(f : \mathbb{P}^1 \to \mathbb{C} \) is constant. (Reminder: We showed that a holomorphic function on any compact complex manifold is constant using the maximum principle. This exercise gives an alternative argument in the case of \(\mathbb{P}^1 \).)

(3) Recall that a hypersurface

\[
X = (F(X_0, \ldots, X_n) = 0) \subset \mathbb{P}^n
\]

is smooth (that is, a complex manifold) iff \(\frac{\partial F}{\partial X_i}(P) \neq 0 \) for some \(i \) for each \(P \in X \). (This follows from the inverse function theorem.)

(a) Show that \(\sum \frac{\partial F}{\partial X_i} \cdot X_i = d \cdot F \) where \(d \) is the degree of \(F \). So the above condition is equivalent to \(\frac{\partial F}{\partial X_i}(P) \neq 0 \) for some \(i \) for each \(P \in \mathbb{P}^n \).

(b) Show that the tangent plane at a point \(P \in X \) is given by the hyperplane

\[
\left(\sum \frac{\partial F}{\partial X_i}(P) \cdot X_i = 0 \right) \subset \mathbb{P}^n.
\]

(c) Show that the Fermat hypersurface \(X = (X_0^d + \cdots + X_n^d = 0) \subset \mathbb{P}^n \) is smooth.

(4) Let \(X \subset \mathbb{P}^n \) be a quadric (a hypersurface of degree 2).

(a) Show that, after a change of coordinates, \(X \) is given by

\[
X = (X_0^2 + \cdots + X_m^2 = 0) \subset \mathbb{P}^m
\]
where \(m \leq n \). [Hint: This is a question about quadratic forms.]

(b) Show that \(X \) is smooth iff \(m = n \).

(c) If \(m = n = 2 \) show that after a change of coordinates

\[
X = (X_0X_2 = X_1^2) \subset \mathbb{P}^2.
\]

Show that there is an isomorphism

\[
\mathbb{P}^1 \to X
\]

given by

\[
(Y_0 : Y_1) \mapsto (Y_0^2 : Y_0Y_1 : Y_1^2).
\]

(d) If \(m = n = 3 \) show that after a change of coordinates

\[
X = (X_0X_3 = X_1X_2) \subset \mathbb{P}^3.
\]

Show that there is an isomorphism

\[
\mathbb{P}^1 \times \mathbb{P}^1 \to X
\]

given by

\[
((Y_0 : Y_1), (Z_0 : Z_1)) \mapsto (Y_0Z_0 : Y_0Z_1 : Y_1Z_0 : Y_1Z_1).
\]

(5) Let \(f: X \to Y \) be a non constant holomorphic map between compact Riemann surfaces. Show that \(g(X) \geq g(Y) \), and that if \(g(X) = g(Y) \) then either \(g(Y) = 1 \) and \(f \) is unramified or \(g(Y) = 0 \). Give examples to show that these cases do occur. [Hint: A Riemann surface \(Y \) of genus 1 is a complex torus \(\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau) \), some \(\tau \in \mathbb{C} \setminus \mathbb{R} \). The only Riemann surface of genus 0 is \(\mathbb{P}^1_{\mathbb{C}} \).]

(6) Recall that if \(a_1, \ldots, a_{2g+2} \) are distinct points in \(\mathbb{P}^1_{\mathbb{C}} \) we constructed a compact Riemann surface \(X \) of genus \(g \) and a degree 2 map \(f: X \to \mathbb{P}^1 \) branched over the \(a_i \). (\(X \) is a so called hyperelliptic Riemann surface.) What happens if we allow two of the \(a_i \) to come together? Draw a picture showing the topology change.

(7) Let \(P \in \mathbb{P}^n \) be a point, and let \(\pi \) be the projection

\[
\pi: \mathbb{P}^n \to \mathbb{P}^{n-1}
\]

given by sending a point \(Q \in \mathbb{P}^n \setminus \{P\} \) to the line \(PQ \) in the projective space \(\mathbb{P}(T_P\mathbb{P}^n) \) of the tangent space to \(\mathbb{P}^n \) at \(P \). (We use a dashed arrow because \(\pi \) is not defined at \(P \).) Show that if \(P = (0 : 0 : \cdots : 0 : 1) \) then \(\pi \) is given in coordinates by

\[
(X_0 : \cdots : X_n) \mapsto (X_0 : \cdots : X_{n-1}).
\]
(8) Recall that if \(X \subset \mathbb{P}^2 \) is a plane curve of degree \(d \) then the projection \(\pi : \mathbb{P}^2 \to \mathbb{P}^1 \) from a point \(P \in \mathbb{P}^2 \setminus X \) induces a map \(X \to \mathbb{P}^1 \) of degree \(d \). Now suppose we project from a point \(P \in X \). Show that we obtain a map \(f : X \to \mathbb{P}^1 \) of degree \(d - 1 \) which is well defined at \(P \) (even though \(\pi \) is not). What is \(f(P) \)?

(9) Let \(X \subset \mathbb{P}^2 \) be a plane curve. We say \(X \) has a node at \(P \) if there are local coordinates \(x, y \) at \(P \in \mathbb{P}^2 \) such that \(X = (xy = 0) \) near \(P \). (This is the simplest possible type of singularity for a curve.) Now suppose \(X \) has degree \(d \), has \(\delta \) nodes, and is smooth elsewhere. Let \(\tilde{X} \) be the Riemann surface obtained from \(X \) by separating the two smooth branches at each node. Show that

\[
g(X) = \frac{1}{2} (d-1)(d-2) - \delta.
\]

[Hint: Generalize the argument we used in the smooth case.]

(10) If \(X \) is a compact Riemann surface then there exists an embedding \(X \subset \mathbb{P}^N \) in projective \(N \)-space for some \(N \) (this is a hard theorem). Show that if \(N \geq 4 \) there is a projection \(\pi : \mathbb{P}^N \to \mathbb{P}^{N-1} \) which induces an embedding \(X \subset \mathbb{P}^{N-1} \). [Hint: Show that the locus of points in \(\mathbb{P}^N \) for which the projection does not yield an embedding has dimension \(\leq 3 \). So any compact Riemann surface can be embedded in \(\mathbb{P}^3 \). Use the same argument to show that any Riemann surface admits an immersion in \(X \to \mathbb{P}^2 \), that is, a map with image a curve with only nodal singularities.

(11) Let \(G \) be a finite group acting on a compact Riemann surface \(X \).

(a) Let \(P \in X \) be a point. Show that the stabilizer \(G_P \subset G \) of \(P \) is a cyclic group acting by

\[
z \mapsto \zeta z
\]

for \(\zeta \) a root of unity, for some choice of local coordinate \(z \) at \(P \). [Hint: Let \(\chi : G_P \to \mathbb{C}^\times \) be the character of \(G_P \) giving the action of \(G \) on the tangent space at \(P \). Let \(w \) be some local coordinate at \(P \), and define \(z = \frac{1}{|G_P|} \sum_{g \in G_P} \chi(g)^{-1} g^* w \). Show that \(z \) is a local coordinate at \(P \) and \(g^* z = \chi(g) \cdot z \).]

(b) Use part (a) to define the structure of a Riemann surface on the topological space \(Y = X/G \).
(c) Show that

$$2g(X) - 2 = |G| \cdot \left((2g(Y) - 2) + \sum_{P \in X} \left(1 - \frac{1}{|G_P|} \right) \right).$$

(d) Deduce that if $g(X) \geq 2$ then $|G| \leq 84(g(X) - 1)$. [Hint: Consider the cases $g(Y) \geq 2$, $g(Y) = 1$, and $g(Y) = 0$ separately. For $g(Y) = 0$ you will need to show the following lemma: if $\{e_P\}$ are positive integers and $S := \sum(1 - \frac{1}{e_P}) \geq 2$, then $S \geq 2 \frac{1}{12}$ (with equality iff $\{e_P\} = \{2, 3, 7\}$).]