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1 Introduction

We study a family of GIT quotients parametrizing n-pointed conics that
generalize the GIT quotients (P1)n//SL2. These latter quotients compactify
the moduli space M0,n of nonsingular n-pointed rational curves by allow-
ing points to collide as long as their weight (a number assigned to each
point by the GIT linearization) is not too much. For the quotients we in-
vestigate, denoted Con(n)//SL3, the compactification allows some points to
overlap but if their weight is too great then the nonsingular conic degener-
ates into a nodal conic. Up to isomorphism nonsingular and nodal conics are
a P1 and a pair of intersecting P1s, respectively, so the spaces Con(n)//SL3

can be viewed as intermediate compactifications between (P1)n//SL2 and the
Deligne-Mumford-Knudsen compactificationM0,n.

Our main result is thatM0,n maps to all possible GIT quotients Con(n)//SL3,
and that many of these morphisms factor through Hassett’s spacesM0,~c of
weighted pointed curves.
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2 GIT Stability of n-pointed conics

The following theorem, proven using the Hilbert-Mumford numerical crite-
rion, characterizes GIT stability for pointed conics.

Theorem 2.1. Let ~w = (γ, c1, . . . , cn) specify an ample fractional line bundle
on the space of n-pointed conics Con(n) ⊂ P(Sym2(V ∗)) × (P(V ))n, V = C3,
linearized for the natural action of SL(V ). If c := c1 + · · · + cn then:

• all non-reduced conics are unstable
• a nodal conic is semistable iff
1. the weight of marked points at any smooth point is ≤ c+γ

3

2. the weight of marked points at the node is ≤ c− 2(c+γ3 ), and
3. the weight on each component away from the node is ≥ c+γ

3

• a nonsingular conic is semistable iff the weight at each point is ≤
min{c+γ3 ,

c
2}

In particular, if γ > c
2 then nodal conics are unstable. Stability of nodal and

nonsingular conics is characterized by the corresponding inequalities being
replaced by strict inequalities.

3 Variation of GIT

When a reductive group G acts on a variety the space of linearized frac-
tional polarizations forms a cone called the G-ample cone, and inside it sits
theG-effective cone which is defined as the set of linearizations for which the
semistable locus is nonempty. The G-effective cone admits a finite wall and
chamber decomposition such that on each open chamber the GIT quotient
is constant and when a wall is crossed the quotient undergoes a birational
modification (see [Tha96] and [DH98]). In some cases this cone admits a
natural cross-section so that the (closure of) the space of linearizations can
be identified with a certain polytope which we call the linearization polytope.

For example, the linearization polytope for the GIT quotients (Pm)n//SLm+1

parametrizing configurations of n points in Pm is the hypersimplex

∆(m + 1, n) = {~w ∈ Qn | 0 ≤ wi ≤ 1,
n∑
i=1

wi = m + 1}

with walls of the form
∑
i∈I wi = k for I ⊂ {1, . . . , n} and 1 ≤ k ≤ m (see,

e.g., Example 3.3.21 in [DH98]). In particular, for points on the line (m = 1)
we have ∆(2, n) with walls

∑
wi = 1, and for points in the plane (m = 2) we

have ∆(3, n) with walls
∑
wi = 1 and

∑
wi = 2. A consequence of Theorem

2.1 is that for the space of n-pointed conics the effective linearizations form
a 1-parameter family of hypersimplices that interpolate these two cases.

*

Figure 1: Hypersimplices ∆(3, 3) (left) and ∆(2, 3) (right).

Corollary 3.1. The SL3-effective cone on Con(n) induced from that of the am-
bient P5 × (P2)n is subdivided by the hyperplane γ = c

2 into two subcones:
γ ≤ c

2 for which semistable nodal conics occur, and γ > c
2 for which singular

conics are unstable. With cross-sections γ + c = 3 on the former and c = 2
on the latter the linearization polytopes for fixed γ are ∆(3 − γ, n) with walls∑
ci = 1 and

∑
ci = 2 if 0 ≤ γ ≤ 1, and ∆(2, n) with walls

∑
ci = 1 if γ ≥ 1.
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Figure 2: The space of linearizations for Con(3).

Remark 3.2. If γ ≥ c
2 then Con(n)//(γ,~c)SL3

∼= (P1)n//~c SL2 so we can restrict γ
to the interval [0, c2], in which case we only need one normalization (namely
γ+ c = 3) and the linearization polytope is ∆(3, n+ 1) with walls

∑
wi = 1 and∑

wi = 2 which are “vertical” in the sense that they are independent of γ.

4 Hassett’s weighted pointed curves

Another interesting family of compactifications is provided by Hassett’s mod-
uli spaces of stable weighted pointed curves [Has03]. For a weight vector
~c ∈ [0, 1]n the space M0,~c parametrizes nodal rational curves with marked
points pi avoiding the nodes such that on any component C we have∑
pi∈C ci + δC > 2, where δC is the number of nodes on C. In particular, if

ci = 1 for 1 ≤ i ≤ n thenM0,~c
∼= M0,n so these spaces can also be viewed

as intermediate compactifications ofM0,n ⊂M0,n. These Hassett compacti-
fications and our conic compactifications are related in the following manner.

Theorem 4.1. For any ~w = (γ,~c) ∈ ∆(3, n + 1) there is a morphismM0,n →
Con(n)//~w SL3. If ~w lies in the interior of a GIT chamber then this morphism
factors through Hassett’s spaceM0,~c.

Our choice of normalization forces
∑n
i=1 ci < 3, which in turn forces all stable

curves parametrized byM0,~c to be chains of P1s. The inner components of
these chains can then be contracted to produce a nodal conic which turns
out to be stable with respect to the GIT linearization corresponding to the
Hassett weight data.

Remark 4.2. This theorem should be thought of as an analogue of the re-
sult of Kapranov [Kap93] thatM0,n admits a morphism to every GIT quotient
(P1)n//SL2. In fact, because Con(n)//(γ,~c)SL3

∼= (P1)n//~c SL2 for γ > 1, this
theorem when combined with Kapranov’s result shows that M0,n admits a
morphism to every GIT quotient Con(n)//SL3.

5 Semistable reduction

The morphism described in Theorem 4.1 can be used to study semistable
reduction in the spaces Con(n)//SL3. Any 1-parameter family of semistable
configurations of n points on a conic must have a semistable limit since the
GIT quotient is proper. If the conics are nonsingular then we can identify
them with P1 and the limit may be computed by first finding the limit as a
stable curve in M0,n and then looking at the image of this curve under the
morphismM0,n→ Con(n)//SL3.

∼=

	

* *

* **
* * * * * * *

*

5
8

5
8

1
8 2

8

5
8

5
8

5
8

5
8

1
8

2
8

5
8

5
8

5
8
5
8

*

*
* *

*

*
*

*

*

*

1
8

2
8

5
8

5
8

5
8

5
85

8

5
8

3
8

Figure 3: An example of semistable reduction with γ = 1
8,~c = (5
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