The group of regular birational maps is infinitely-generated

Shamil Asgarli, Kuan-Wen Lai, Masahiro Nakahara and Susanna Zimmermann Brown University, UMass Amherst, University of Manchester, Université d'Angers

Motivation via Finite Fields

Consider a birational map $f : \mathbb{P}^2 \to \mathbb{P}^2$ defined over a finite field \mathbb{F}_q . Furthermore, assume that both f and f^{-1} have no \mathbb{F}_q -points in their indeterminacy loci. In down-to-earth terms, the rational map f is given by

 $f([x,y,z]) = [f_1(x,y,z) : f_2(x,y,z) : f_3(x,y,z)]$

where f_1, f_2, f_3 are homogenous polynomials of the same degree. The condition that the indeterminacy locus Ind(f) has no \mathbb{F}_{q^-} points in \mathbb{P}^2 amounts to saying that the polynomials f_1, f_2, f_3 have no common (nonzero) solution with coordinates in \mathbb{F}_q . **Observation.** Such a map f gives rise to a bijection

 $f: \mathbb{P}^2(\mathbb{F}_q) \to \mathbb{P}^2(\mathbb{F}_q)$

Question 1. Consider a bijection $\sigma : \mathbb{P}^2(\mathbb{F}_q) \to \mathbb{P}^2(\mathbb{F}_q)$ which can be interpreted as a permutation $\sigma \in S_{q^2+q+1}$. Does there exist a birational map $f : \mathbb{P}^2 \to \mathbb{P}^2$ which induces σ ? **Question 2.** The set of all such birational maps forms a group $\mathrm{BCr}_2(\mathbb{F}_q)$ under composition. Is this group finitely-generated?

Introduction

The birational automorphisms of \mathbb{P}^2 defined over a field k form the *Cremona group* $\operatorname{Cr}_2(k)$ under composition. Let $\operatorname{Ind}(f) \subset \mathbb{P}^2$ denote the set of points where $f \in \operatorname{Cr}_2(k)$ is not defined. We are interested in the subgroup

 $BCr_2(k) := \{ f \in Cr_2(k) : Ind(f)(k) = Ind(f^{-1})(k) = \emptyset \}.$

Elements of $BCr_2(k)$ are called *regular birational maps*. In particular, when $k = \mathbb{F}_q$ is a finite field, every element in $BCr_2(\mathbb{F}_q)$ induces a permutation of the finite set $\mathbb{P}^2(\mathbb{F}_q)$.

Examples. Elements of $PGL_3(k)$ are examples of birational maps. Another example is the standard quadratic transformation $\tau : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ defined by $\tau([x : y : z]) = [yz : zx : xy].$

Theorem (Noether and Castelnuovo 1901)

Suppose k is algebraically closed. Then $Cr_2(k)$ is generated by $PGL_3(k)$ and the standard quadratic involution τ above.

Theorem (Cantat 2012)

Suppose k is an arbitrary field. Then Cremona group $\operatorname{Cr}_2(k)$ is infinitely-generated.

Theorem (A.-Lai-Nakahara-Zimmermann)

Suppose k is a perfect field admitting a quadratic extension of degree of 2. Then the group of regular birational maps $BCr_2(k)$ is infinitely-generated. Furthermore, $BCr_2(k)$ is non-normal subgroup of infinite index of $Cr_2(k)$.

Idea behind infinite-generation

For each $f \in BCr_2(k)$, define L_f to be the minimal field extension of k such that all the indeterminacy points of f and f^{-1} are defined over L_f . If $BCr_2(k)$ were finitely-generated by $f_1, f_2, ..., f_r$ then for each $f \in BCr_2(k)$, L_f would be contained in the compositum of $L_{f_1}, ..., L_{f_r}$, and in particular

 $[L_f:k] \le [L_{f_1}:k] \cdot [L_{f_2}:k] \cdots [L_{f_r}:k]$

which would imply that the set

 $\{[L_f:k]: f \in \mathrm{BCr}_2(k)\}\$

is bounded. Therefore, it is enough to prove that, $[L_f : k]$ achieves arbitrarily large values as f varies in $BCr_2(k)$.

Constructing the Cremona map: Algebra

For each $n \ge 2$, pick n + 4 points on the plane where the 4 points and n points separately form two Galois orbits. Consider the linear system of degree 2n + 1 curves passing through the 4 points with multiplicity n, and through the n points with multiplicity 2. See Figure 1 for the case n = 6. Assuming the points are in sufficiently general position, this vector space has dimension

$$\binom{2n+3}{2} - 4\binom{n(n+1)}{2} - 3n = 3$$

since each multiplicity k point imposes k(k + 1)/2 linear conditions. Choose a basis $\{f_1, f_2, f_3\}$ for this vector space, and define a rational map $f : \mathbb{P}^2 \to \mathbb{P}^2$ such that

 $f(x, y, z) = [f_1(x, y, z) : f_2(x, y, z) : f_3(x, y, z)]$

One can check that $f \in BCr_2(k)$, and the indeterminacy locus consists of exactly n + 4 points above. Moreover, $[L_f : k] \ge n$ and we seem to be done!

Subtlety: How can we choose the points so they are in general position *and* form Galois orbits?

Figure 1: Degree 13 curve passing through 10 points (n = 6)

Constructing the Cremona map: Geometry

There is a geometric construction for the Cremona map discussed in the previous section. Here is a key diagram:

The spaces \mathcal{C} and \mathcal{C}' will be both conic bundles.

Let T be a quadratic extension of k. Pick four points $\{a_1, a_2, b_1, b_2\}$ in $\mathbb{P}^2(T)$ such that $\{a_1, a_2\}$ and $\{b_1, b_2\}$ form $\operatorname{Gal}(T/k)$ -orbits, and no three of these four points are collinear.

Step 1. Blow-up \mathbb{P}^2 along $\{a_1, a_2, b_1, b_2\}$ to obtain a conic bundle $\mathcal{C} \to \mathbb{P}^1$, which is fibered in the conics passing through $\{a_1, a_2, b_1, b_2\}$. Let $\ell_1 \subset \mathbb{P}^2$ be a line over T passing through a_1 , but not a_2, b_1, b_2 , and let ℓ_2 be its $\operatorname{Gal}(T/k)$ -conjugate.

Step 2. There exists a closed point $x \in \ell_1$ defined over an even degree extension K/k but not over any proper subfield, such that r of the $\operatorname{Gal}(K/k)$ -conjugates of x lie on ℓ_1 (resp. ℓ_2), where $r = \frac{1}{2}[K : k]$ and such that all n = 2r conjugates of x lie in the distinct fibers of $\mathcal{C} \to \mathbb{P}^1$.

Step 3. Blow-up \mathcal{C} at these *n* points to get a map $X \to \mathcal{C}$.

Step 4. Blow-down the strict transforms of the *n* blown-up points to get \mathcal{C}' . Check that the resulting surface \mathcal{C}' is smooth and admits a conic fibration. Moreover, \mathcal{C}' is also a blow-up of \mathbb{P}^2 at four points.

References

[[]Can09] Serge Cantat, Birational permutations, C. R. Math. Acad. Sci. Paris 347 (2009), no. 21-22, 1289–1294. MR 2561040