product W/ Juman Tu, or Kv: 1906.0112, or Kv: 1810.0114, proving
just W/ Juman Tu, or Kv: 1906.0112, or Kv: 1810.0114, proving
in according Bois Dubrevin (1950-2014)
(). When one we extract Growner-18344 provided typing of
gave X (counting ones in X suff provided typing
inversions) deally from the filegy - citigory of X?
Shing? Giv inversions hard to ompate. But take (X) also
there is no but 4115 predicts tak(X) = Die (X) do
there is no but 4115 predicts tak(X) = Die (X) do
there is no but 4115 predicts tak(X) = one to
use ourser space X, and Die (X) cour to angle.
Konteneds capitation of Gu souts that only
un as upped a category E, are called lefter of
filewing Boreander - Kontenicle (~ 2000)
For g 70, Costello (2005) + Kontenicle (~ 2000)
For g 70, Costello (2005) + Kontenicle (~ 2000)
For g 70, Costello (2005) + Kontenicle (% 2000)
For g 70, Costello (2005) + Kontenicle (% 2000)
For g 70, Costello (2005) + Kontenicle (% 2000)
For g 70, Costello (2005) + Kontenicle (% 2000)
Now approach by (C-M) following an iska of Godlo
grow new definition of user for g = 1, n = 1, the new
invariants ajus the capitation is manable to computation.
More approach by (C-M) following an iska of Godlo
grow new definition of users for g = 1, n = 1, the new
invariants of a capitation is the B- used of it.
Also for category of the B- used if Weather
the device category of the B- used if Weather
the device category of the B- used if the for
the device category of the B- used if for
the device category of the B- used if it.
2) Other are campetered as the second for the device of the for

$$g = 2, n = 1.$$

2) Other are capital as a function
 $f_{g,n}(x) : SymK(H+(x)) H) \rightarrow C$
or duble.

$$\hat{F}(X) \in Sym^{*}(u^{-1} H^{*}(X)[u^{-1}])(\pi)[\lambda]$$

gues X Important note: The definition requires integration of cohomology classes on the <u>compactified</u> module spaces of curves. Equivalently, we anstruct alcomology classes on They and 'integrate against the fund amendal class.

3). What is this in categorical language?

If $b = \operatorname{Fuk}(X)$, $\operatorname{HH}_{*}(b) = \operatorname{H}^{*}(X)$. So we'd like to define, out of a category b (with extra structure) an invariant

$$F(e) \in Sym^*(u^{-1} HH_*(e)[u^{-1}]).$$

Extra structure :

-
$$b$$
 will need to be smooth, proper, (Y
- this guaranties that Hodge - de Rhaue s.s. degenerates
 $HC^{-}(b) \simeq \bar{u}'HH_{*}(b)[u^{-}]$ (same $u!$)

the A-side.

Du

- do the austruction at chain bevel, on Sym
$$(u^{-1}C_{*}(A)[u^{-1}])$$

Note that Sym $(u^{-1}C_{*}(A)[u^{-1}])$ carries operators b, B, A,
S=-2 (all a line lifes) which trather form a BV

$$(b+uB)\widetilde{S} + t\Delta\widetilde{S} + \frac{1}{2} \{\widetilde{S}, \widetilde{S}\} = 0$$

$$(b+uB+t\Delta) \exp(\frac{3}{4}) = 0$$

Problems: a) sublim
$$\tilde{S}$$
 will generally not be windy
detrived by a few instal conditions
b) will is a that such as \tilde{S} corresponds
to takegority only along a goal of them.
- where do all these quadrot once from?
Then (Kartwich Sicklussen, Goffelds): There is on each on of
the deprope $C_{\infty}(M_{2n}^{+})$ on $C_{\infty}(A)$ for a cyclic
 A_{00} - algebra A .
Exploredies: $-M_{2n}^{+}$ - funced workild spaces
 $- cyclic (A_{0-1}^{-} dychr., exceeds the algory of
 $- cyclic (A_{0-1}^{-} dychr.)$ discovered by Builded - See,
(exidition $\tilde{S}(up + h homestry) - discovered by Builded - See,
(exidity i differenced by
 $S_{0,5} = \frac{1}{c} [M_{0,5}/Z_{3}]$.
What are the Sogn's? think of them as
 $S_{0,7} = M_{0,7} \sum_{n}^{1} \{\varepsilon - hkd of \partial M_{0,7}/\Sigma_{n}\}$
E.g.
So we could the $\tilde{S} = image of S in
 $Sigm (u^{-1}C_{N}[u^{-1}])$
The new pathons:
a) Not a pathom to go from $Cr(M_{2,n}^{+})$ to
 $Ca(M_{0,7}^{-}) - tale (S^{+}) commands$
Built the '+' by a problem : the gravedor Δ
) defined by anometry of the action of two
match and by a summetry of the field of Δ on Δ .
b) the dy mometry of the field of Δ on Δ on Δ on Δ on Δ of the explored
 $M_{0,7}^{-}$ the field of Δ on Δ of Δ on Δ of Δ on Δ on Δ on Δ on Δ on Δ on Δ of the field.
I), then if we matched in Δ of Δ on Δ of Δ on Δ of Δ o$$$$$$$$$$$

would not behave well: it gives rise to a hoomology dass [exp 3] for $(b + uB + f \Delta)$ not for (b + uB)so we cannot part to (b + uB) - hourslogy to end upin H-dR $Sym <math>(Hc^{-}(A)) = Sym (u' HH_{*}(A)[u'])$

This is because we only "integrated" along the Sg.n 's not along the whole $M_{g.n}$.

5) Construction;

1) Use en del idea of Costello: Replace $C_*(M_{g,n}^{fr}/\Sigma_n)$ by the "Koszul vesdubion" Kgin: $0 \rightarrow C_{*}(M_{g,1,n-1}) \xrightarrow{\iota} C_{*}(M_{g,2,n-2}) \xrightarrow{\iota} \xrightarrow{\iota} C_{*}(M_{g,n,0}) \rightarrow 0$ where $M_{g,K,n-K} = moduli sp. of curves of guns g, K$ antisymmetric inputs, n-k symmetric outputsThen the operators by uB, D, 3-,-3 can be defined one the revolution s.t. $(C_{x}(M_{+,*}/2), d+hA, \{-,-\}) \simeq (K_{+,*}, b+uB+L+hA, \{-,-\})$ as dala's. So we can solve the QME in Kgin, for which there is a combinational model using ribbon graphs. This sloes the first problem, and we end up with elements $\widetilde{S}_{g,n} \in Hom\left(C_{*}(A)[[u]], u^{\prime}C_{*}(A)[[u])\right)$ 2) lise the splitting of Hodge - de Rham to trivialize the circle action, and in particular to trivialize the dgla (explicitly) $(K_{*,\times}, b+uB+\iota+h\Delta, \{-,-\}) \simeq (K_{*,\times}, b+\iota)$ The homology of $(K_{*,*}, b+c)$ is sym $(u^{-1}H_{*}(4)[u^{-1}])$ Map Z 3gen under this trivialisation to get F. 6). Explicit example: $S_{0,3} = \frac{1}{2} - \frac{1}{2}$ QME: $(b+uB)S_{1,1} = \Delta(S_{0,3}) = \frac{1}{2}$ $F_{1,1} = \int_{S_{1,1}}^{X} + \int_{S_{1,1}}^{S_{0,3}}$

(evaluating using an A_o wodel for $D_{ch}^{b}(E_{7})$ due to Polishchuk gives the correct answer, if we we the correct splifting required by Mirror Symmetry)