Math 797W Homework 4

Paul Hacking

December 5, 2016

We work over an algebraically closed field k.
(1) Let \mathcal{F} be a sheaf of abelian groups on a topological space X, and $p \in X$ a point. Recall the definition of the stalk \mathcal{F}_{p} of \mathcal{F} at p :

$$
\mathcal{F}_{p}=\underset{p \in U}{\lim } \mathcal{F}(U)=\{(U, s) \mid U \subset X \text { open, } p \in U, \text { and } s \in \mathcal{F}(U)\} / \sim
$$

where $(U, s) \sim(V, t)$ if $\left.s\right|_{W}=\left.t\right|_{W}$ for some open set $W \subset U \cap V$ such that $p \in W$.
(a) Let A be an abelian group. Define the associated constant sheaf \underline{A} on a topological space X by

$$
\Gamma(U, \underline{A})=\{f \mid f: U \rightarrow A \text { continuous }\}
$$

for $U \subset X$ an open set, where we give A the discrete topology. Show that $\Gamma(U, \underline{A})=A^{I}$ where I is the set of connected components of U. For $p \in X$ a point show that the stalk $\underline{A}_{p}=A$.
(b) Let X be a topological space, $Y \subset X$ a closed subset, and \mathcal{F} a sheaf on Y. Let $i_{*} \mathcal{F}$ be the pushforward of \mathcal{F} by the inclusion $i: Y \rightarrow X$, that is, $\Gamma\left(U, i_{*} \mathcal{F}\right)=\mathcal{F}\left(i^{-1} U\right)=\mathcal{F}(U \cap Y)$ for $U \subset X$ an open set. Show that $\left(i_{*} \mathcal{F}\right)_{p}=\mathcal{F}_{p}$ if $p \in Y$ and $\mathcal{F}_{p}=\{0\}$ otherwise.
(c) Let X be a Riemann surface (a complex manifold of dimension 1) with its Euclidean topology, and \mathcal{O}_{X} the sheaf of holomorphic functions on X. For $p \in X$ a point show that the stalk $\mathcal{O}_{X, p}$ is isomorphic to the ring $\mathbb{C}\{z\}$ of complex power series in a variable z with positive radius of convergence.
(d) Let X be an algebraic variety and \mathcal{O}_{X} the sheaf of regular functions. Let $p \in X$ a point and $U \subset X$ an open affine subvariety such that $p \in U$. Show that the stalk $\mathcal{O}_{X, p}$ coincides with the local ring of X at p given by the localization $k[U]_{I(p)}$ of the coordinate ring $k[U]=\Gamma\left(U, \mathcal{O}_{X}\right)$ of U at the maximal ideal $I(p)$ corresponding to p.
(2) Recall that we say a sequence of sheaves

$$
\mathcal{F}^{\prime} \rightarrow \mathcal{F} \rightarrow \mathcal{F}^{\prime \prime}
$$

of abelian groups on a topological space X is exact if the sequence of stalks $\mathcal{F}_{p}^{\prime} \rightarrow \mathcal{F}_{p} \rightarrow \mathcal{F}_{p}^{\prime \prime}$ is exact for all $p \in X$.
(a) Let X be a complex manifold. Let $\underline{\mathbb{Z}}$ be the constant sheaf on X with stalk \mathbb{Z} (see Q1(a)), \mathcal{O}_{X} the sheaf of holomorphic functions on X, and \mathcal{O}_{X}^{\times}the sheaf of nowhere-zero holomorphic functions on X (with group operation given by multiplication). Show that there is a short exact sequence of sheaves of abelian groups on X

$$
0 \rightarrow \underline{\mathbb{Z}} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}^{\times} \rightarrow 0,
$$

where the first map is the inclusion of the locally constant \mathbb{Z} valued functions in the holomorphic functions, and the second map is given by $f \mapsto \exp (2 \pi i f)$. This sequence is usually called the exponential sequence.
[Hint: To show that the second map is surjective on stalks at $p \in X$, one needs to construct logarithms of functions $g \in \mathcal{O}_{X}^{\times}(U)$ for U a neighbourhood of p, possibly after shrinking U. We may assume U is contractible, then, first choosing a logarithm of $g(p)$, we define

$$
\log g(q)=\log g(p)+\int_{\gamma_{q}} \frac{d g}{g}
$$

for $q \in U$, where γ_{q} is a path from p to q in U (this is well defined by Stokes' theorem).]
(b) Now assume $X=\mathbb{C}$. Show that the map $\mathcal{O}_{X}(U) \rightarrow \mathcal{O}_{X}^{\times}(U)$ is not surjective for $U=\mathbb{C} \backslash\{0\}$. Give a necessary and sufficient condition on an open set $V \subset \mathbb{C}$ for $\mathcal{O}_{X}(V) \rightarrow \mathcal{O}_{X}^{\times}(V)$ to be surjective.
(3) Let X be a variety and $Y \subset X$ a closed subvariety. Then we have a short exact sequence of sheaves on X

$$
0 \rightarrow \mathcal{I}_{Y} \rightarrow \mathcal{O}_{X} \rightarrow i_{*} \mathcal{O}_{Y} \rightarrow 0
$$

Here $\mathcal{I}_{Y} \subset \mathcal{O}_{X}$ is the ideal sheaf of regular functions on X vanishing on Y and $i: Y \rightarrow X$ is the inclusion.
(a) Check that the above sequence of sheaves is exact as follows: for $p \in X$ a point, let $U \subset X$ be an open affine subvariety such that $p \in U$, let $A=k[U]$ be the coordinate ring of $U, I=I(Y \cap U) \subset A$ the prime ideal corresponding to $Y \cap U$, and $\mathfrak{m}=I(p) \subset A$ the maximal ideal corresponding to p. Then the sequence of stalks at p is given by the localization of the exact sequence of A-modules

$$
0 \rightarrow I \rightarrow A \rightarrow A / I \rightarrow 0
$$

at the maximal ideal \mathfrak{m}.
(b) Suppose $X=\mathbb{P}^{n}$ and $Y=V(F) \subset X$ is the hypersurface defined by an irreducible homogeneous polynomial $F \in k\left[X_{0}, \ldots, X_{n}\right]$ of degree d. Show that we have an isomorphism of sheaves of $\mathcal{O}_{\mathbb{P}^{n}}$ modules

$$
\mathcal{O}_{\mathbb{P}^{n}}(-d) \xrightarrow{\sim} \mathcal{I}_{Y}, \quad s \mapsto s \cdot F .
$$

Now use the long exact sequence of cohomology for the exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-d) \rightarrow \mathcal{O}_{\mathbb{P}^{n}} \rightarrow i_{*} \mathcal{O}_{Y} \rightarrow 0
$$

and the known cohomology groups of $\mathcal{O}_{\mathbb{P}^{n}}(m), m \in \mathbb{Z}$ to show that

$$
\operatorname{dim}_{k} H^{i}\left(Y, \mathcal{O}_{Y}\right)= \begin{cases}1 & \text { if } i=0 \\ \binom{d-1}{n} & \text { if } i=n-1=\operatorname{dim} Y \\ 0 & \text { otherwise }\end{cases}
$$

(4) In this question, we will discuss the general definition of Cech cohomology for sheaves of abelian groups on a topological space X. (See also Griffiths and Harris, p. 38-43 for further details and motivation, and Mumford and Oda, Ch. VII, for complete proofs.) For an open
covering $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ (say for simplicity finite), as in class we define the associated Cech complex by

$$
C^{p}(\mathcal{U}, \mathcal{F})=\bigoplus_{i_{0}<i_{1}<\cdots<i_{p}} \mathcal{F}\left(U_{i_{0} \cdots i_{p}}\right)
$$

(where we write $U_{i_{0} \cdots i_{p}}=U_{i_{0}} \cap \cdots \cap U_{i_{p}}$)) with differential $\delta: C^{p} \rightarrow C^{p+1}$ given by

$$
(\delta s)_{i_{0} \cdots i_{p+1}}=\left.\sum_{j=0}^{p+1}(-1)^{j} s_{i_{0} \cdots \hat{i}_{j} \cdots i_{p+1}}\right|_{U_{i_{0} \cdots i_{p+1}}} .
$$

One checks that $\delta^{2}=0$, and defines

$$
H^{p}(\mathcal{U}, \mathcal{F})=\operatorname{ker}\left(\delta: C^{p} \rightarrow C^{p+1}\right) / \operatorname{im}\left(\delta: C^{p-1} \rightarrow C^{p}\right)
$$

the p th cohomology group of the complex.
If $\mathcal{V}=\left\{V_{j}\right\}_{j \in J}$ is a refinement of \mathcal{U}, that is, there exists $f: J \rightarrow I$ such that $V_{j} \subset U_{f(j)}$ for all j, we can define a morphism of complexes

$$
\theta: C^{\bullet}(\mathcal{U}, F) \rightarrow C^{\bullet}(\mathcal{V}, F)
$$

via $\theta(s)_{j_{0} \cdots j_{p}}=\left.s_{f\left(j_{0}\right) \cdots f\left(j_{p}\right)}\right|_{V_{j_{0} \cdots j_{p}}}$. (Here we extend the definition of $s_{i_{0} \cdots i_{p}}$ from the case $i_{0}<\ldots<i_{p}$ to the general case by requiring $s_{\sigma\left(i_{0}\right) \cdots \sigma\left(i_{p}\right)}=\operatorname{sgn}(\sigma) s_{i_{0} \cdots i_{p}}$ for σ a permutation of i_{0}, \ldots, i_{p}.) Although this depends on the choice of $f: J \rightarrow I$, one shows that the induced maps on the cohomology groups of the complexes do not. Finally one defines the Cech cohomology group

$$
H^{p}(X, \mathcal{F})=\underset{\mathfrak{U}}{\lim } H^{p}(\mathcal{U}, \mathcal{F})
$$

where the direct limit is over the set of all open coverings \mathcal{U} of X with the partial ordering given by refinement.
The Leray theorem then asserts the following: if $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ is an open covering such that $H^{q}\left(U_{i_{0} \cdots i_{p}}, \mathcal{F}\right)=0$ for all $p \geq 0, i_{0}, \ldots, i_{p} \in I$, and $q>0$, then $H^{p}(\mathcal{U}, \mathcal{F})=H^{p}(X, \mathcal{F})$ for all p. That is, the Cech cohomology groups are computed by the open covering \mathcal{U}. In the case of an algebraic variety and a coherent sheaf \mathcal{F}, this condition is satisfied for \mathcal{U} a finite open covering by open affine sets. (This explains the definition of cohomology of coherent sheaves given in class.)
(a) Let $X=|\Sigma|$ be the topological realization of a finite simplicial complex Σ. For v a vertex of Σ, let $U_{v}=\operatorname{Star}(v) \subset X$ be the open set given by the union of the interiors of the simplices σ such that $v \in \sigma$. Show that the Cech complex for the sheaf $\underline{\mathbb{Z}}$ on X and the open covering $\mathcal{U}=\left\{U_{v}\right\}_{v \in V}$ is identified with the complex computing the simplicial cohomology of X. So $H^{p}(\mathcal{U}, \underline{\mathbb{Z}})=H^{p}(X, \mathbb{Z})$, the (simplicial) cohomology of X with integral coefficients.
Moreover, if Σ^{\prime} is a subdivision of Σ, and \mathcal{U}^{\prime} is the corresponding refinement of \mathcal{U}, show that the induced map $H^{p}(\mathcal{U}, \underline{\mathbb{Z}}) \rightarrow$ $H^{p}\left(\mathcal{U}^{\prime}, \underline{\mathbb{Z}}\right)$ corresponds to the identity map $H^{p}(X, \mathbb{Z}) \rightarrow H^{p}(X, \mathbb{Z})$. Since any open covering \mathcal{V} of X is refined by the open covering associated to some subdivision of Σ, it follows that

$$
H^{p}(X, \underline{\mathbb{Z}}):=\underset{\overrightarrow{\mathcal{V}}}{\lim } H^{p}(\mathcal{V}, \underline{\mathbb{Z}})=H^{p}(X, \mathbb{Z})
$$

[If you have trouble, see Griffiths and Harris, p. 42-43.]
(b) Let X be a complex manifold. Consider the exponential sequence (see Q2) and the associated long exact sequence of cohomology

$$
\begin{aligned}
0 \rightarrow & H^{0}(X, \mathbb{Z}) \rightarrow H^{0}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}^{\times}\right) \\
& \stackrel{\delta}{\rightarrow} H^{1}(X, \underline{\mathbb{Z}}) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow \cdots
\end{aligned}
$$

Show that the connecting homomorphism

$$
\delta: H^{0}\left(X, \mathcal{O}_{X}^{\times}\right) \rightarrow H^{1}(X, \underline{Z})=H^{1}(X, \mathbb{Z})=\operatorname{Hom}\left(H_{1}(X, \mathbb{Z}), \mathbb{Z}\right)
$$

is given by the winding number:

$$
\delta(g)=\left(\gamma \mapsto \frac{1}{2 \pi i} \int_{\gamma} \frac{d g}{g}\right)
$$

[Note: The result of part (a) is valid for infinite simplicial complexes. This is needed for X non-compact. (If X is compact then $H^{0}\left(\mathcal{O}_{X}\right)=\mathbb{C}$ by the maximum principle, so $\delta=0$ in this case.)]
(c) Let X be a complex manifold and $\operatorname{Pic}(X)$ the group of isomorphism classes of holomorphic line bundles on X, with group law the tensor product. Here, by a holomorphic line bundle we mean
a morphism $\pi: L \rightarrow X$ of complex manifolds such that there is an open covering $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ of X and local trivializations

$$
\varphi_{i}: \pi^{-1}\left(U_{i}\right) \xrightarrow{\sim} U_{i} \times \mathbb{C}
$$

over U_{i} such that the transition maps

$$
\varphi_{j} \circ \varphi_{i}^{-1}: U_{i j} \times \mathbb{C} \xrightarrow{\sim} U_{i j} \times \mathbb{C}
$$

are given by

$$
\varphi_{j} \circ \varphi_{i}^{-1}(p, v)=\left(p, g_{i j}(p) \cdot v\right)
$$

where $g_{i j} \in \mathcal{O}^{\times}\left(U_{i j}\right)$ is a nowhere-zero holomorphic function on $U_{i j}$. Show that the assignment $L \mapsto\left[\left(g_{i j}\right)\right]$ defines an isomorphism of abelian groups

$$
\operatorname{Pic}(X) \xrightarrow{\sim} H^{1}\left(X, \mathcal{O}_{X}^{\times}\right):=\underset{\mathcal{U}}{\lim } H^{1}\left(\mathcal{U}, \mathcal{O}_{X}^{\times}\right) .
$$

[Note: The same result holds for X a variety and $\operatorname{Pic}(X)$ the group of isomorphism classes of algebraic line bundles. However, note that \mathcal{O}_{X}^{\times}is not a coherent sheaf (it is not even a sheaf of \mathcal{O}_{X}-modules), so the Cech cohomology group $H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)$is not computed by a single open affine covering \mathcal{U} of X in general.]
(d) Let X be a compact complex manifold. Show that the long exact sequence of cohomology for the exponential sequence gives an exact sequence of abelian groups

$$
\begin{aligned}
0 & \rightarrow H^{1}(X, \mathbb{Z}) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow \operatorname{Pic} X \\
& \xrightarrow{\delta} H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X, \mathcal{O}_{X}\right) \rightarrow \cdots
\end{aligned}
$$

(e) Let X be a complex smooth projective variety, and $X^{\text {an }}$ be the associated compact complex manifold. If E is an algebraic vector bundle over X, let $E^{\text {an }}$ be the associated holomorphic vector bundle over $X^{\text {an }}$, and write $\mathcal{E}, \mathcal{E}^{\text {an }}$ for the sheaves of sections. Then $H^{p}(X, \mathcal{E})=H^{p}\left(X^{\text {an }}, \mathcal{E}^{\text {an }}\right)$. Moreover, the map $L \mapsto L^{\text {an }}$ gives an isomorphism $\operatorname{Pic}(X) \xrightarrow{\sim} \operatorname{Pic}\left(X^{\mathrm{an}}\right)$. (See Serre, Géométrie algébrique et géométrie analytique (1956).) So, we can use part (d) to compute $\operatorname{Pic}(X)$. As an example, show that $\operatorname{Pic}\left(\mathbb{P}^{n}\right) \simeq \mathbb{Z}$.
(5) Let X be a smooth projective curve. In class we described an isomorphism

$$
\operatorname{Pic}(X) \xrightarrow{\sim} \operatorname{Cl}(X), \quad \mathcal{L} \mapsto(s),
$$

where $0 \neq s \in \Gamma(U, \mathcal{L})$ is a non-zero section of \mathcal{L} over an open set $U \subset X,(s)$ is the divisor of zeroes and poles of s, and $\mathrm{Cl}(X)$ is the divisor class group of X, the abelian group of divisors D on X modulo the subgroup of principal divisors (f) for $f \in k(X)^{\times}$. The inverse is given by $D \mapsto \mathcal{O}_{X}(D)$, where $\mathcal{O}_{X}(D)$ is the (sheaf of sections of the) line bundle defined by

$$
\Gamma\left(U, \mathcal{O}_{X}(D)\right)=\left\{f \in k(X)^{\times}|((f)+D)|_{U} \geq 0\right\} \cup\{0\}
$$

for $U \subset X$ open. [Note: An analogous statement holds for smooth varieties of dimension >1 as well.]
Since $\operatorname{deg}(f)=0$ for all $f \in k(X)^{\times}$, we have a group homomorphism

$$
\operatorname{deg}: \mathrm{Cl}(X) \rightarrow \mathbb{Z}
$$

(a) Show that deg: $\mathrm{Cl}\left(\mathbb{P}^{1}\right) \rightarrow \mathbb{Z}$ is an isomorphism.
(b) Suppose X has genus 1, and choose a basepoint $p_{0} \in X$. Let $\mathrm{Cl}^{0}(X)$ be the kernel of deg: $\mathrm{Cl}(X) \rightarrow \mathbb{Z}$. For $[D] \in \mathrm{Cl}^{0}(X)$, show using the Riemann-Roch formula that $\operatorname{dim}_{k} H^{0}\left(\mathcal{O}_{X}\left(D+p_{0}\right)\right)=1$, and deduce that there is a unique $p \in X$ such that $[D]=\left[p-p_{0}\right] \in$ $\mathrm{Cl}^{0}(X)$. So we have a bijection of sets

$$
X \rightarrow \mathrm{Cl}^{0}(X), \quad p \mapsto\left[p-p_{0}\right]
$$

In particular, X is naturally an abelian group with identity element p_{0}.
[Remark: In general, for $k=\mathbb{C}$, using $\mathrm{Q} 4(\mathrm{~d})$ and (e) one can show that $\mathrm{Cl}^{0}(X) \simeq \operatorname{Pic}^{0} X \simeq H^{1}\left(X, \mathcal{O}_{X}\right) / H^{1}(X, \mathbb{Z})$. By Hodge theory, this quotient is a complex torus of dimension the genus g of X (that is, isomorphic to $\mathbb{C}^{g} / \bigoplus_{i=1}^{2 g} \mathbb{Z} \lambda_{i}$ where $\lambda_{1}, \ldots, \lambda_{2 g}$ is a basis of \mathbb{C}^{g} as an \mathbb{R}-vector space).]
(6) Let X be an algebraic variety. For \mathcal{E} a vector bundle on X of rank r, let $\operatorname{det} \mathcal{E}:=\wedge^{r} \mathcal{E}$ be the top exterior power of \mathcal{E}. (So, if \mathcal{E} has transition functions $g_{i j} \in \operatorname{GL}_{r}\left(\mathcal{O}_{X}\left(U_{i j}\right)\right)$, then $\wedge^{r} \mathcal{E}$ is the line bundle
with transition functions $\operatorname{det}\left(g_{i j}\right)$.) In particular, if X is smooth, the canonical line bundle ω_{X} of X is defined by

$$
\omega_{X}=\operatorname{det} \Omega_{X}=\wedge^{\operatorname{dim} X} \Omega_{X}
$$

(a) Let $0 \rightarrow \mathcal{E}^{\prime} \rightarrow \mathcal{E} \rightarrow \mathcal{E}^{\prime \prime} \rightarrow 0$ be a short exact sequence of vector bundles on X. Show that

$$
\operatorname{det} \mathcal{E} \simeq \operatorname{det} \mathcal{E}^{\prime} \otimes \operatorname{det} \mathcal{E}^{\prime \prime}
$$

[Hint: For the block matrix $M=\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$ we have $\operatorname{det} M=$ $\operatorname{det} A \cdot \operatorname{det} C$.]
(b) Recall the exact sequence of vector bundles on \mathbb{P}^{n} (the Euler sequence)

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(1)^{\oplus n+1} \rightarrow \mathcal{T}_{\mathbb{P}^{n}} \rightarrow 0
$$

where $\mathcal{T}_{\mathbb{P}^{n}}$ is the tangent bundle of \mathbb{P}^{n} and the first map is given by $1 \mapsto\left(X_{0}, \ldots, X_{n}\right)$. (See Griffiths and Harris, p. 408-409, or Hartshorne, Ch. II, Theorem 8.13, p. 176.) Dualizing, we have the exact sequence

$$
0 \rightarrow \Omega_{\mathbb{P}^{n}} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1)^{\oplus n+1} \rightarrow \mathcal{O}_{\mathbb{P}^{n}} \rightarrow 0
$$

Deduce that $\omega_{\mathbb{P}^{n}} \simeq \mathcal{O}_{\mathbb{P}^{n}}(-(n+1))$.
[Alternatively, one can compute that for the rational n-form $\omega=$ $d x_{1} \wedge \cdots \wedge d x_{n}$ on \mathbb{P}^{n}, where $x_{i}=X_{i} / X_{0}$, the divisor of zeroes and poles is given by $(\omega)=-(n+1) H$ where H is the hyperplane $\left(X_{0}=0\right) \subset \mathbb{P}^{n}$.]
(c) Let $n \geq 2$ and $Y \subset \mathbb{P}^{n}$ be the hypersurface defined by an irreducible homogeneous polynomial $F \in k\left[X_{0}, \ldots, X_{n}\right]$ of degree d. Assume Y is smooth. Show that there is an exact sequence of sheaves on Y

$$
\left.\left.0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-d)\right|_{Y} \rightarrow \Omega_{\mathbb{P}^{n}}\right|_{Y} \rightarrow \Omega_{Y} \rightarrow 0
$$

where the first map is given on $U_{i}=\left(X_{i} \neq 0\right) \simeq \mathbb{A}^{n}$ by $1 / X_{i}^{d} \mapsto$ $d\left(F / X_{i}^{d}\right)$, the differential of the equation of $Y \cap U_{i} \subset U_{i}$.
[Remark: The above exact sequence is dual to the exact sequence

$$
\left.0 \rightarrow \mathcal{T}_{Y} \rightarrow \mathcal{T}_{\mathbb{P}^{n}}\right|_{Y} \rightarrow \mathcal{N}_{Y / \mathbb{P}^{n}} \rightarrow 0
$$

where $\mathcal{N}_{Y / \mathbb{P}^{n}}$ is the normal bundle of Y in \mathbb{P}^{n}.]
(d) Deduce that $\left.\left.\omega_{Y} \simeq\left(\omega_{\mathbb{P}^{n}} \otimes \mathcal{O}_{\mathbb{P}^{n}}(d)\right)\right|_{Y} \simeq \mathcal{O}_{\mathbb{P}^{n}}(d-n-1)\right|_{Y}$.
[Remark: This is a special case of the adjunction formula

$$
\omega_{Y}=\left.\left(\omega_{X} \otimes \mathcal{O}_{X}(Y)\right)\right|_{Y}
$$

for X a smooth variety and $Y \subset X$ a smooth subvariety of codimension 1.]
(e) Using part (d), show that $\operatorname{dim}_{k} H^{0}\left(Y, \omega_{Y}\right)=\binom{d-1}{n}$. (Alternatively, this follows from Q3b and Serre duality.)
[Hint: Tensor the exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-d) \rightarrow \mathcal{O}_{\mathbb{P}^{n}} \rightarrow i_{*} \mathcal{O}_{Y} \rightarrow 0
$$

by the line bundle $\mathcal{O}_{\mathbb{P}^{n}}(d-n-1)$ and consider the associated long exact sequence of cohomology.]

