Math 797W Homework 3

Paul Hacking

November 28, 2016

We work over an algebraically closed field k.

(1) Let $F_1, \ldots, F_m \in k[X_1, \ldots, X_n]$ be *m* non-constant homogeneous polynomials in *n* variables over an algebraically closed field *k*. Show that if m < n then the system of equations

$$F_1 = F_2 = \dots = F_m = 0$$

has a non-trivial solution $0 \neq (a_1, \ldots, a_n) \in k^n$.

[Remark: If each F_i has degree 1 then this is a basic result of linear algebra, valid for any field k.]

(2) Let $g \in k[x, y]$ be an irreducible polynomial. Let $X = V(z^3 - g) \subset \mathbb{A}^3_{x,y,z}$ and $Y = \mathbb{A}^2$. Let $f: X \to Y$ be the morphism given by $(x, y, z) \mapsto (x, y)$. Let $h \in k[X]$ be such that $Z = V(h) \subset X$ is irreducible. Find the equation of the image $f(Z) \subset Y$ in terms of h.

[Hint: Write $h = a_0 + a_1 z + a_2 z^2$ where $a_0, a_1, a_2 \in k[x, y]$. Review the proof of Krull's principal ideal theorem given in class and in Mumford's red book, pp. 41–43.]

(3) Let $X \subset \mathbb{P}^n$ be a closed subset, not necessarily irreducible. Let Y be a variety and $f: X \to Y$ a map of sets such that the restriction to each irreducible component of X is a morphism. Suppose f(X) is irreducible and every fiber of f is irreducible of the same dimension r. Prove that X is irreducible and dim $X = \dim f(X) + r$.

[Hint: If $f: X \to Y$ is a morphism of varieties such that f(X) = Y, then for all $p \in Y$ a point and $Z \subset f^{-1}(p)$ an irreducible component we have dim $Z \ge \dim X - \dim Y$, moreover there is an open set $U \subset Y$ such that $U \subset f(X)$ and for all $p \in U$ and $Z \subset f^{-1}(p)$ an irreducible component we have dim $Z = \dim X - \dim Y$. Also, if $f: X \to Y$ is a morphism of algebraic varieties and X is projective then $f(X) \subset Y$ is closed. (We proved this for $k = \mathbb{C}$ using compactness for the analytic topology. The general case can be proved by a different method, cf. Mumford's red book, pp. 54–57.)]

(4) In this question, we will show that that every cubic surface $X \subset \mathbb{P}^3$ contains a line. (In fact, it is a classical result due to Cayley and Salmon that every smooth cubic surface contains exactly 27 lines.)

Let G(r, n) denote the *Grassmannian* of subspaces of k^n of dimension r. Equivalently, the Grassmannian G(r, n) is the set of projective linear subspaces of \mathbb{P}^{n-1} of dimension r-1. The Grassmannian G(r, n) is a projective variety of dimension r(n-r).

Let $M \simeq \mathbb{P}^{19}$ be the projectivization of the k-vector space of homogeneous polynomials in X_0, \ldots, X_3 of degree 3. So a point [F] of Mcorresponds to a cubic surface $X = V(F) \subset \mathbb{P}^3$ (not necessarily irreducible).

Now let $I \subset M \times G(2,4)$ be the closed subset defined by

$$I = \{ (X, L) \mid L \subset X \}.$$

That is, I is the set of pairs (X, L) consisting of a cubic surface $X \subset \mathbb{P}^3$ and a line $L \subset \mathbb{P}^3$ such that $L \subset X$. Let $f: I \to M$, $(X, L) \mapsto X$ and $g: I \to G(2, 4), (X, L) \mapsto L$ be the projection maps.

- (a) Show that every fiber of g is isomorphic to \mathbb{P}^{15} . Deduce using Q3 that I is irreducible and dim I = 19.
- (b) Let $X = V(X_1X_2X_3 X_0^3) \subset \mathbb{P}^3$. Show that X contains exactly 3 lines.
- (c) Show that f is surjective, that is, every cubic surface contains a line.
- (5) Let $X = V(a_0X_0^4 + a_1X_0^3X_1 + \dots + a_NX_3^4) \subset \mathbb{P}^3$ be a quartic surface. Show that there is an irreducible homogeneous polynomial G such that X contains a line iff $G(a_0, \dots, a_N) = 0$.

- (6) Let X be a curve (a variety of dimension 1) and $p \in X$ a smooth point. Let t be a generator of the maximal ideal $m_{X,p} \subset \mathcal{O}_{X,p}$, a local parameter at $p \in X$. Show that $\mathcal{O}_{X,p}$ is a discrete valuation ring (cf. Prof. Tevelev's 612 notes, Definition 10.3.1, p. 74) as follows:
 - (a) For 0 ≠ f ∈ O_{X,p}, show that there exist unique n ∈ Z_{≥0} and u ∈ O_{X,p} a unit such that f = u ⋅ tⁿ. Similarly, for 0 ≠ g ∈ k(X), the field of fractions of O_{X,p}, there exist unique n ∈ Z and u ∈ O_{X,p} a unit such that g = u ⋅ tⁿ.
 [Hint: We have ∩_{n≥1} mⁿ_{X,p} = (0), either by the Krull intersection theorem or by Nakayama's lemma (using m_{X,p} principal).]
 - (b) Given $0 \neq g \in k(X)$ as in (a), define $\nu(g) = n \in \mathbb{Z}$. (We say $\nu(g)$ is the order of vanishing of g at p.) Show that $\nu \colon k(X)^{\times} \to \mathbb{Z}$ satisfies $\nu(gh) = \nu(g) + \nu(h)$ and $\nu(g+h) \geq \min(\nu(g), \nu(h))$ (when $g + h \neq 0$) for all $g, h \in k(X)^{\times}$. Show that

$$\mathcal{O}_{X,p} = \{g \in k(X)^{\times} \mid \nu(g) \ge 0\} \cup \{0\}.$$

We say ν is a *discrete valuation* and $\mathcal{O}_{X,p}$ is the associated *discrete valuation ring*.

(c) Recall that we have a injective ring homomorphism $\mathcal{O}_{X,p} \subset \mathcal{O}_{X,p}$ and an identification of $\hat{\mathcal{O}}_{X,p}$ with k[[x]], the formal power series ring in the variable x, given by $x \mapsto t$. Show that the field of fractions of k[[x]] is the field of *formal Laurent series*

$$k((x)) = \left\{ \sum_{n \ge m} a_n x^n \mid m \in \mathbb{Z}, a_n \in k \right\}.$$

Show that the valuation ν is induced by the valuation

$$\hat{\nu} \colon k((x))^{\times} \to \mathbb{Z}$$

given by $\hat{\nu}(f) = m$ for $f = \sum_{n \ge m} a_n x^n, a_m \neq 0$.

(7) Let $f \in k[x_1]$ be a polynomial of degree $d \ge 1$ with distinct roots, and

$$V_1 = V(y_1^2 - f(x_1)) \subset \mathbb{A}^2_{x_1, y_1}.$$

Write $l = \lceil d/2 \rceil$, so that $2l = d + \delta$ where $\delta = 0$ if d is even and $\delta = 1$ if d is odd.

As in HW1Q14, consider the surface $X = X(n) = U_1 \cup U_2$ for n = -l, where $U_1 = \mathbb{A}^2_{x_1,y_1}$ and $U_2 = \mathbb{A}^2_{x_2,y_2}$, with glueing given by

$$\mathbb{A}^2_{x_1,y_1} \supset (x_1 \neq 0) \xrightarrow{\sim} (x_2 \neq 0) \subset \mathbb{A}^2_{x_2,y_2},$$
$$(x_1,y_1) \mapsto (x_1^{-1}, x_1^n y_1).$$

Let $p: X \to \mathbb{P}^1$ be the morphism given in charts by $\mathbb{A}^2_{x_i,y_i} \to \mathbb{A}^1_{x_i}$, $(x_i, y_i) \mapsto x_i$.

Let Y be the closure of V_1 in X. Thus $Y = V_1 \cup V_2$ where $V_2 = Y \cap U_2$.

- (a) Find the equation of the second affine chart $V_2 \subset \mathbb{A}^2_{x_2, u_2}$ for Y.
- (b) Show that Y is smooth (cf. HW2Q4(a)).
- (c) Show that p restricts to a finite morphism $f: Y \to \mathbb{P}^1$. [Here, we say a morphism $f: X \to Y$ of varieties is *finite* if there is an affine open covering $Y = \bigcup U_i$ such that for each i the open subvariety $f^{-1}U_i \subset X$ is affine and the induced morphism $f^{-1}U_i \to U_i$ is finite, that is, $k[f^{-1}U_i]$ is a finitely generated $k[U_i]$ module.]
- (d) Show that $|f^{-1}(p)| \leq 2$ for all $p \in \mathbb{P}^1$, and $|f^{-1}(p)| = 1$ for exactly 2l points $p \in \mathbb{P}^1$.
- (e) Now suppose $k = \mathbb{C}$. Show that X is compact. Show that X is a Riemann surface of genus g = l 1.

[Hint: For the genus calculation, compare Miles Reid, Undergraduate algebraic geometry, pp. 50–51.]

(8) Let Y be the curve described in Q7. Show that the k-vector space $\Omega_Y(Y)$ of global differentials on Y has dimension l-1.

[Hint: Compare the analogous calculation for a plane curve given in class.]