Math 797W Homework 3

Paul Hacking

November 28, 2016

We work over an algebraically closed field k.
(1) Let $F_{1}, \ldots, F_{m} \in k\left[X_{1}, \ldots, X_{n}\right]$ be m non-constant homogeneous polynomials in n variables over an algebraically closed field k. Show that if $m<n$ then the system of equations

$$
F_{1}=F_{2}=\cdots=F_{m}=0
$$

has a non-trivial solution $0 \neq\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$.
[Remark: If each F_{i} has degree 1 then this is a basic result of linear algebra, valid for any field k.]
(2) Let $g \in k[x, y]$ be an irreducible polynomial. Let $X=V\left(z^{3}-g\right) \subset \mathbb{A}_{x, y, z}^{3}$ and $Y=\mathbb{A}^{2}$. Let $f: X \rightarrow Y$ be the morphism given by $(x, y, z) \mapsto$ (x, y). Let $h \in k[X]$ be such that $Z=V(h) \subset X$ is irreducible. Find the equation of the image $f(Z) \subset Y$ in terms of h.
[Hint: Write $h=a_{0}+a_{1} z+a_{2} z^{2}$ where $a_{0}, a_{1}, a_{2} \in k[x, y]$. Review the proof of Krull's principal ideal theorem given in class and in Mumford's red book, pp. 41-43.]
(3) Let $X \subset \mathbb{P}^{n}$ be a closed subset, not necessarily irreducible. Let Y be a variety and $f: X \rightarrow Y$ a map of sets such that the restriction to each irreducible component of X is a morphism. Suppose $f(X)$ is irreducible and every fiber of f is irreducible of the same dimension r. Prove that X is irreducible and $\operatorname{dim} X=\operatorname{dim} f(X)+r$.
[Hint: If $f: X \rightarrow Y$ is a morphism of varieties such that $\overline{f(X)}=Y$, then for all $p \in Y$ a point and $Z \subset f^{-1}(p)$ an irreducible component
we have $\operatorname{dim} Z \geq \operatorname{dim} X-\operatorname{dim} Y$, moreover there is an open set $U \subset Y$ such that $U \subset f(X)$ and for all $p \in U$ and $Z \subset f^{-1}(p)$ an irreducible component we have $\operatorname{dim} Z=\operatorname{dim} X-\operatorname{dim} Y$. Also, if $f: X \rightarrow Y$ is a morphism of algebraic varieties and X is projective then $f(X) \subset Y$ is closed. (We proved this for $k=\mathbb{C}$ using compactness for the analytic topology. The general case can be proved by a different method, cf. Mumford's red book, pp. 54-57.)]
(4) In this question, we will show that that every cubic surface $X \subset \mathbb{P}^{3}$ contains a line. (In fact, it is a classical result due to Cayley and Salmon that every smooth cubic surface contains exactly 27 lines.)
Let $G(r, n)$ denote the Grassmannian of subspaces of k^{n} of dimension r. Equivalently, the Grassmannian $G(r, n)$ is the set of projective linear subspaces of \mathbb{P}^{n-1} of dimension $r-1$. The Grassmannian $G(r, n)$ is a projective variety of dimension $r(n-r)$.
Let $M \simeq \mathbb{P}^{19}$ be the projectivization of the k-vector space of homogeneous polynomials in X_{0}, \ldots, X_{3} of degree 3 . So a point $[F]$ of M corresponds to a cubic surface $X=V(F) \subset \mathbb{P}^{3}$ (not necessarily irreducible).
Now let $I \subset M \times G(2,4)$ be the closed subset defined by

$$
I=\{(X, L) \mid L \subset X\}
$$

That is, I is the set of pairs (X, L) consisting of a cubic surface $X \subset \mathbb{P}^{3}$ and a line $L \subset \mathbb{P}^{3}$ such that $L \subset X$. Let $f: I \rightarrow M,(X, L) \mapsto X$ and $g: I \rightarrow G(2,4),(X, L) \mapsto L$ be the projection maps.
(a) Show that every fiber of g is isomorphic to \mathbb{P}^{15}. Deduce using Q3 that I is irreducible and $\operatorname{dim} I=19$.
(b) Let $X=V\left(X_{1} X_{2} X_{3}-X_{0}^{3}\right) \subset \mathbb{P}^{3}$. Show that X contains exactly 3 lines.
(c) Show that f is surjective, that is, every cubic surface contains a line.
(5) Let $X=V\left(a_{0} X_{0}^{4}+a_{1} X_{0}^{3} X_{1}+\cdots+a_{N} X_{3}^{4}\right) \subset \mathbb{P}^{3}$ be a quartic surface. Show that there is an irreducible homogeneous polynomial G such that X contains a line iff $G\left(a_{0}, \ldots, a_{N}\right)=0$.
(6) Let X be a curve (a variety of dimension 1) and $p \in X$ a smooth point. Let t be a generator of the maximal ideal $m_{X, p} \subset \mathcal{O}_{X, p}$, a local parameter at $p \in X$. Show that $\mathcal{O}_{X, p}$ is a discrete valuation ring (cf. Prof. Tevelev's 612 notes, Definition 10.3.1, p. 74) as follows:
(a) For $0 \neq f \in \mathcal{O}_{X, p}$, show that there exist unique $n \in \mathbb{Z}_{\geq 0}$ and $u \in$ $\mathcal{O}_{X, p}$ a unit such that $f=u \cdot t^{n}$. Similarly, for $0 \neq g \in k(X)$, the field of fractions of $\mathcal{O}_{X, p}$, there exist unique $n \in \mathbb{Z}$ and $u \in \mathcal{O}_{X, p}$ a unit such that $g=u \cdot t^{n}$.
[Hint: We have $\bigcap_{n \geq 1} m_{X, p}^{n}=(0)$, either by the Krull intersection theorem or by Nakayama's lemma (using $m_{X, p}$ principal).]
(b) Given $0 \neq g \in k(X)$ as in (a), define $\nu(g)=n \in \mathbb{Z}$. (We say $\nu(g)$ is the order of vanishing of g at p.) Show that $\nu: k(X)^{\times} \rightarrow \mathbb{Z}$ satisfies $\nu(g h)=\nu(g)+\nu(h)$ and $\nu(g+h) \geq \min (\nu(g), \nu(h))$ (when $g+h \neq 0)$ for all $g, h \in k(X)^{\times}$. Show that

$$
\mathcal{O}_{X, p}=\left\{g \in k(X)^{\times} \mid \nu(g) \geq 0\right\} \cup\{0\} .
$$

We say ν is a discrete valuation and $\mathcal{O}_{X, p}$ is the associated discrete valuation ring.
(c) Recall that we have a injective ring homomorphism $\mathcal{O}_{X, p} \subset \hat{\mathcal{O}}_{X, p}$ and an identification of $\hat{\mathcal{O}}_{X, p}$ with $k[[x]]$, the formal power series ring in the variable x, given by $x \mapsto t$. Show that the field of fractions of $k[[x]]$ is the field of formal Laurent series

$$
k((x))=\left\{\sum_{n \geq m} a_{n} x^{n} \mid m \in \mathbb{Z}, a_{n} \in k\right\}
$$

Show that the valuation ν is induced by the valuation

$$
\hat{\nu}: k((x))^{\times} \rightarrow \mathbb{Z}
$$

given by $\hat{\nu}(f)=m$ for $f=\sum_{n \geq m} a_{n} x^{n}, a_{m} \neq 0$.
(7) Let $f \in k\left[x_{1}\right]$ be a polynomial of degree $d \geq 1$ with distinct roots, and

$$
V_{1}=V\left(y_{1}^{2}-f\left(x_{1}\right)\right) \subset \mathbb{A}_{x_{1}, y_{1}}^{2}
$$

Write $l=\lceil d / 2\rceil$, so that $2 l=d+\delta$ where $\delta=0$ if d is even and $\delta=1$ if d is odd.

As in HW1Q14, consider the surface $X=X(n)=U_{1} \cup U_{2}$ for $n=-l$, where $U_{1}=\mathbb{A}_{x_{1}, y_{1}}^{2}$ and $U_{2}=\mathbb{A}_{x_{2}, y_{2}}^{2}$, with glueing given by

$$
\begin{gathered}
\mathbb{A}_{x_{1}, y_{1}}^{2} \supset\left(x_{1} \neq 0\right) \xrightarrow{\sim}\left(x_{2} \neq 0\right) \subset \mathbb{A}_{x_{2}, y_{2}}^{2}, \\
\left(x_{1}, y_{1}\right) \mapsto\left(x_{1}^{-1}, x_{1}^{n} y_{1}\right) .
\end{gathered}
$$

Let $p: X \rightarrow \mathbb{P}^{1}$ be the morphism given in charts by $\mathbb{A}_{x_{i}, y_{i}}^{2} \rightarrow \mathbb{A}_{x_{i}}^{1}$, $\left(x_{i}, y_{i}\right) \mapsto x_{i}$.
Let Y be the closure of V_{1} in X. Thus $Y=V_{1} \cup V_{2}$ where $V_{2}=Y \cap U_{2}$.
(a) Find the equation of the second affine chart $V_{2} \subset \mathbb{A}_{x_{2}, y_{2}}^{2}$ for Y.
(b) Show that Y is smooth (cf. HW2Q4(a)).
(c) Show that p restricts to a finite morphism $f: Y \rightarrow \mathbb{P}^{1}$. [Here, we say a morphism $f: X \rightarrow Y$ of varieties is finite if there is an affine open covering $Y=\bigcup U_{i}$ such that for each i the open subvariety $f^{-1} U_{i} \subset X$ is affine and the induced morphism $f^{-1} U_{i} \rightarrow U_{i}$ is finite, that is, $k\left[f^{-1} U_{i}\right]$ is a finitely generated $k\left[U_{i}\right]-$ module.]
(d) Show that $\left|f^{-1}(p)\right| \leq 2$ for all $p \in \mathbb{P}^{1}$, and $\left|f^{-1}(p)\right|=1$ for exactly $2 l$ points $p \in \mathbb{P}^{1}$.
(e) Now suppose $k=\mathbb{C}$. Show that X is compact. Show that X is a Riemann surface of genus $g=l-1$.
[Hint: For the genus calculation, compare Miles Reid, Undergraduate algebraic geometry, pp. 50-51.]
(8) Let Y be the curve described in Q7. Show that the k-vector space $\Omega_{Y}(Y)$ of global differentials on Y has dimension $l-1$.
[Hint: Compare the analogous calculation for a plane curve given in class.]

