Math 797W Homework 2

Paul Hacking

November 28, 2016

We work over an algebraically closed field k.
(1) Let $f: X \rightarrow Y$ be a morphism from a projective variety X to an affine variety Y. Show that $f(X)$ is a point.
(2) Consider the morphism

$$
f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}, \quad\left(X_{0}: X_{1}\right) \mapsto\left(X_{0}^{3}: X_{0}^{2} X_{1}: X_{0} X_{1}^{2}: X_{1}^{3}\right) .
$$

Let $X=f\left(\mathbb{P}^{1}\right) \subset \mathbb{P}^{3}$, the rational normal curve of degree 3 .
(a) Show that $X=V(J)$ where

$$
J:=\left(Y_{0} Y_{2}-Y_{1}^{2}, Y_{1} Y_{3}-Y_{2}^{2}, Y_{0} Y_{3}-Y_{1} Y_{2}\right)
$$

(b) Prove that J is the kernel of the ring homomorphism

$$
k\left[Y_{0}, Y_{1}, Y_{2}, Y_{3}\right] \rightarrow k\left[X_{0}, X_{1}\right], \quad Y_{0}, Y_{1}, Y_{2}, Y_{3} \mapsto X_{0}^{3}, X_{0}^{2} X_{1}, X_{0} X_{1}^{2}, X_{1}^{3}
$$

Deduce that J is prime and hence $J=I(X)$.
(3) Let

$$
\begin{gathered}
f: \mathbb{P}^{2} \stackrel{\sim}{\longrightarrow} X \subset \mathbb{P}^{5} \\
\left(X_{0}: X_{1}: X_{2}\right) \mapsto\left(X_{0}^{2}: X_{1}^{2}: X_{2}^{2}: X_{0} X_{1}: X_{0} X_{2}: X_{1} X_{2}\right)
\end{gathered}
$$

be the Veronese surface in \mathbb{P}^{5} (the second Veronese embedding of \mathbb{P}^{2}).
(a) Show that f induces a bijective correspondence between hyperplanes H in \mathbb{P}^{5} and curves $Y=V(F) \subset \mathbb{P}^{2}$, where $F \in k\left[X_{0}, X_{1}, X_{2}\right]$ is a homogeneous polynomial of degree 2, via $H \mapsto f^{-1} H$. (Note: F need not be irreducible.)
(b) Deduce that, for $Y \subset \mathbb{P}^{2}$ as in (a), the open subset $U:=\mathbb{P}^{2} \backslash Y \subset$ \mathbb{P}^{2} is isomorphic to an affine variety.
(c) More generally, show that if $X \subset \mathbb{P}^{n}$ is a projective variety, and $Y=V(F) \subset \mathbb{P}^{n}$ where $F \in k\left[X_{0}, \ldots, X_{n}\right]$ is a homogeneous polynomial of some degree d, then the open subset $U:=X \backslash Y \subset X$ is isomorphic to an affine variety.
(4) Assume $\operatorname{char}(k) \neq 2$. Let $X=V\left(y^{2}-f(x)\right) \subset \mathbb{A}_{x, y}^{2}$ where $f \in k[x]$ is a polynomial of degree $d \geq 1$ with distinct roots.
(a) Show that X is smooth.
(b) Let \bar{X} denote the closure of X in \mathbb{P}^{2}. Compute the homogeneous equation of \bar{X}
(c) Determine the set $\bar{X} \backslash X$ for $d \geq 3$.
(d) Show that \bar{X} is not smooth if $d \geq 4$.
(5) Let $F \in k\left[X_{0}, \ldots, X_{n}\right]$ be an irreducible homogeneous polynomial of degree d in $n+1$ variables, for some $n \geq 2$, and $X=V(F) \subset \mathbb{P}^{n}$ the associated projective hypersurface. Assume that char (k) does not divide d.
(a) Prove Euler's formula

$$
\sum_{i=0}^{n} X_{i} \cdot \frac{\partial F}{\partial X_{i}}=d \cdot F
$$

(b) Show that the singular locus of X is given by

$$
\operatorname{Sing}(X)=V\left(\frac{\partial F}{\partial X_{0}}, \cdots, \frac{\partial F}{\partial X_{n}}\right) \subset \mathbb{P}^{n}
$$

(c) Show that if $F=X_{0}^{d}+X_{1}^{d}+\cdots+X_{n}^{d}$ then X is smooth.
(d) Suppose $d=2$. Then, by the classification of quadratic forms, after a linear change of homogeneous coordinates on \mathbb{P}^{n} we may assume that $F=X_{0}^{2}+X_{1}^{2}+\cdots+X_{m}^{2}$, where $m \leq n$. (Here $m+1$ is the rank of the quadratic form F.)
i. Show that $X_{0}^{2}+\cdots+X_{m}^{2}$ is irreducible iff $m \geq 2$.
ii. Show that X is smooth iff $m=n$ and identify the singular locus for $m<n$.
iii. Deduce that two smooth quadric hypersurfaces of the same dimension are isomorphic. In particular, for X a smooth quadric hypersurface in \mathbb{P}^{n}, if $n=2$ then $X \simeq \mathbb{P}^{1}$ and if $n=3$ then $X \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$ (why?).
(e) Assume $\operatorname{char}(k)=0$ and $d>2$. Show that if $F=X_{0}^{d-1} X_{1}+$ $X_{1}^{d-1} X_{2}+\cdots+X_{n}^{d-1} X_{0}$ then X is smooth.
(6) Let $X \subset \mathbb{P}^{4}$ be a projective hypersurface of degree $d>1$. Suppose that X contains a plane $\Pi \subset \mathbb{P}^{4}$ (a projective linear subspace of dimension $2)$. Show that X is necessarily singular.
(7) Let $\pi: \widetilde{\mathbb{A}^{n}} \rightarrow \mathbb{A}^{n}$ denote the blowup of the origin in \mathbb{A}^{n}. That is,

$$
\widetilde{\mathbb{A}^{n}}=V\left(\left\{x_{i} X_{j}-x_{j} X_{i} \mid 1 \leq i<j \leq n\right\}\right) \subset \mathbb{A}_{x_{1}, \ldots, x_{n}}^{n} \times \mathbb{P}_{\left(X_{1}: \cdots: X_{n}\right)}^{n-1}
$$

and the morphism $\pi: \widetilde{\mathbb{A}^{n}} \rightarrow \mathbb{A}^{n}$ is the restriction of the first projection $\mathbb{A}^{n} \times \mathbb{P}^{n-1} \rightarrow \mathbb{A}^{n}$.
(a) Show that $\widetilde{\mathbb{A}^{n}}$ is covered by n affine open subsets, each isomorphic to \mathbb{A}^{n}, and describe the restriction of π to each chart explicitly.
(b) Show that $E:=\pi^{-1}(0)$ is isomorphic to \mathbb{P}^{n-1} and that $\widetilde{\mathbb{A}^{n}} \backslash E \rightarrow$ $\mathbb{A}^{n} \backslash\{0\}$ is an isomorphism. What is the defining equation of E in each chart?
(c) Now suppose $X \subset \mathbb{A}^{n}$ is an affine variety and $p \in X$ is a point. We can define the blowup $\pi_{X}: \tilde{X} \rightarrow X$ of X at p as follows (we do not assume X is smooth at p here). We may assume (applying a translation) that $p=0 \in \mathbb{A}^{n}$. Let

$$
\tilde{X}:=\overline{\pi^{-1}(X \backslash\{0\})} \subset \widetilde{\mathbb{A}^{n}},
$$

the closure of the inverse image of $X \backslash\{0\}$, and let $\pi_{X}: \tilde{X} \rightarrow X$ be the restriction of π. Then, writing $F:=\tilde{X} \cap E$, we have $F=\pi_{X}^{-1}(p)$ and π_{X} induces an isomorphism $\tilde{X} \backslash F \xrightarrow{\sim} X \backslash\{p\}$. (The closed subvariety $\tilde{X} \subset \widetilde{\mathbb{A}^{n}}$ is sometimes called the strict transform of X in $\widetilde{\mathbb{A}^{n}}$.)

Show that if $k=\mathbb{C}$ then the morphism π_{X} is proper for the analytic topology. That is, if $K \subset X \subset \mathbb{C}^{n}$ is compact then $\pi_{X}^{-1} K \subset \tilde{X}$ is compact.
(8) Let X be a variety over $k=\mathbb{C}$, and $S \subset X$ the set of singularities of X. A resolution of singularities is a morphism $f: Y \rightarrow X$ such that Y is a smooth variety, f restricts to an isomorphism $Y \backslash f^{-1}(S) \xrightarrow{\sim} X \backslash S$, and f is proper for the analytic topology. (For the last condition, see Q7. It rules out for example taking $Y=X \backslash S$ and f the inclusion.)
(a) Let $X=V\left(x^{2}+y^{2}+z^{2}\right) \subset \mathbb{A}_{x, y, z}^{3}$. Show that the blowup $\pi_{X}: \tilde{X} \rightarrow$ X of $0 \in X$ is a resolution of singularities, and that $F=\pi_{X}^{-1}(0)$ is isomorphic to \mathbb{P}^{1}.
[Hint: With notation as in Q7(c), what is the homogeneous equation of $F \subset E=\pi^{-1}(0) \simeq \mathbb{P}^{2}$?]
(b) (Optional) Let $X=V\left(x y-z^{n}\right) \subset \mathbb{A}_{x, y, z}^{3}$, where $n \in \mathbb{N}, n \geq 2$. Show that there exists a resolution of singularities $f: Y \rightarrow X$ such that $f^{-1}(0)$ is a chain of $n-1$ copies of \mathbb{P}^{1}. That is, $f^{-1}(0)=$ $C_{1} \cup \cdots \cup C_{n-1}$ where each C_{i} is isomorphic to \mathbb{P}^{1}, C_{i} and C_{i+1} meet transversely at a single point for each $1 \leq i<n-1$, and $C_{i} \cap C_{j}=\emptyset$ for $|i-j|>1$.
[Hint: Blowup the singular point and use induction.]
(9) We say a polynomial $F \in k\left[X_{0}, \ldots, X_{n}, Y_{0}, \ldots, Y_{m}\right]$ is bihomogeneous of degree (d, e) if it is homogeneous of degree d in the X variables and homogeneous of degree e in the Y variables, that is,

$$
F=\sum_{\substack{i_{0}+\cdots+i_{n}=d \\ j_{0}+\cdots+j_{m}=e}} a_{i_{0} \cdots i_{n} j_{0} \cdots j_{m}} X_{0}^{i_{0}} \cdots X_{n}^{i_{n}} Y_{0}^{j_{0}} \cdots Y_{m}^{j_{m}}
$$

Similarly to the case of \mathbb{P}^{n}, closed subsets of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ are defined by ideals generated by bihomogeneous polynomials.
Now consider $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $F \in k\left[X_{0}, X_{1}, Y_{0}, Y_{1}\right]$ an irreducible bihomogeneous polynomial of degree (d, e).
(a) Consider the projective variety $X:=V(F) \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$. Show that for any $p \in \mathbb{P}^{1}$ the intersection $X \cap\{p\} \times \mathbb{P}^{1}$ consists of e points counting multiplicities (unless $d=1, e=0$, and $X=\{p\} \times \mathbb{P}^{1}$) and
similarly $X \cap \mathbb{P}^{1} \times\{p\}$ consists of d points counting multiplicities (unless $d=0, e=1$, and $X=\mathbb{P}^{1} \times\{p\}$). [This is similar to HW1Q11 so you need only explain briefly here.]
(b) Consider the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in \mathbb{P}^{3} :

$$
\begin{gathered}
f: \mathbb{P}^{1} \times \mathbb{P}^{1} \xrightarrow{\sim} Y \subset \mathbb{P}^{3}, \\
\left(\left(X_{0}: X_{1}\right),\left(Y_{0}: Y_{1}\right)\right) \mapsto\left(X_{0} Y_{0}: X_{1} Y_{0}: X_{0} Y_{1}: X_{1} Y_{1}\right) .
\end{gathered}
$$

Show that $f(X)$ is equal to the intersection of Y with a hypersurface $V(G) \subset \mathbb{P}^{3}$ defined by some homogeneous polynomial $G \in k\left[Z_{00}, Z_{10}, Z_{01}, Z_{11}\right]$ iff $d=e$.
(10) Let $\pi: \widetilde{\mathbb{P}^{2}} \rightarrow \mathbb{P}^{2}$ be the blowup of \mathbb{P}^{2} at the point $p=(1: 0: 0)$. Explicitly, we can identify $\widetilde{\mathbb{P}^{2}}$ with

$$
X=V\left(X_{1} Y_{2}-X_{2} Y_{1}\right) \subset \mathbb{P}_{\left(X_{0}: X_{1}: X_{2}\right)}^{2} \times \mathbb{P}_{\left(Y_{1}: Y_{2}\right)}^{1}
$$

so that the morphism $\pi: \widetilde{\mathbb{P}^{2}} \rightarrow \mathbb{P}^{2}$ is given by the restriction of the first projection $\mathbb{P}^{2} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$. Then, under the Segre embedding

$$
\begin{aligned}
& f: \mathbb{P}^{2} \times \mathbb{P}^{1} \xrightarrow{\sim} Y \subset \mathbb{P}^{5} \\
&\left(\left(X_{0}: X_{1}: X_{2}\right),\left(Y_{1}: Y_{2}\right)\right) \mapsto\left(X_{0} Y_{1}: X_{1} Y_{1}: X_{2} Y_{1}: X_{0} Y_{2}: X_{1} Y_{2}: X_{2} Y_{2}\right)
\end{aligned}
$$

we have $Z:=f(X)=Y \cap H$ where $H \subset \mathbb{P}^{5}$ is the hyperplane $H=$ $V\left(Z_{12}-Z_{21}\right)$. Thus, identifying $H=\mathbb{P}_{\left(Z_{01}: Z_{11}: Z_{02}: Z_{12}: Z_{22}\right)}$, we have an embedding $Z \subset \mathbb{P}^{4}$. The projective variety $Z \subset \mathbb{P}^{4}$ is called the cubic scroll.
(a) Let $E=\pi^{-1}(p) \subset X$. Let $L=V\left(X_{0}\right) \subset \mathbb{P}^{2}$ and $L^{\prime}=\pi^{-1}(L) \subset X$ (note that $p \notin L$). Show that $f(E)$ is a line in \mathbb{P}^{4} and $f\left(L^{\prime}\right)$ is a smooth conic in a plane in \mathbb{P}^{4} (where the line and the plane in \mathbb{P}^{4} are disjoint).
(b) For M a line in \mathbb{P}^{2} passing through p, let $M^{\prime}:=\overline{\pi^{-1}(M \backslash\{p\})}$ be the strict transform of M. Equivalently, we have the morphism $g: X \rightarrow \mathbb{P}^{1}$ given by the restriction of the second projection $\mathbb{P}^{2} \times$ $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, and as M varies the curves $M^{\prime} \subset X$ are precisely the fibers of the morphism g. Show that M^{\prime} maps to the line in \mathbb{P}^{4} connecting the two points $f\left(E \cap M^{\prime}\right)$ and $f\left(L^{\prime} \cap M^{\prime}\right)$.
(c) Deduce that there is an isomorphism $\varphi: E \xrightarrow{\sim} L^{\prime}$ such that $Z=$ $f(X)$ is the disjoint union of the lines L_{p} connecting the points p and $\varphi(p)$ for $p \in E \simeq \mathbb{P}^{1}$.
(d) (Optional) Show that the degree of $Z \subset \mathbb{P}^{4}$ equals 3 .
[Hint: Recall that for $X \subset \mathbb{P}^{n}$ a projective variety of dimension d, the degree of X equals the number of points in the intersection $X \cap H_{1} \cap \cdots \cap H_{d}$ where $H_{1}, \ldots, H_{d} \subset \mathbb{P}^{n}$ are general hyperplanes (assuming $\operatorname{char}(k)=0$). More generally, whenever $X \cap H_{1} \cap \cdots \cap H_{d}$ is a finite set, the degree of X is equal to the number of points counted with multiplicities. One approach in our case: show that $Z \cap V\left(Z_{02}\right)=L^{\prime}+V\left(Y_{2}\right)$ and $Z \cap V\left(Z_{11}\right)=E+2 \cdot V\left(Y_{1}\right)$, so that the intersection $Z \cap V\left(Z_{02}\right) \cap V\left(Z_{11}\right)$ consists of $1+2=3$ points counting multiplicities. Another approach (assuming $k=$ $\mathbb{C})$: compute the intersection number in $H_{*}\left(\mathbb{P}^{2} \times \mathbb{P}^{1}, \mathbb{Z}\right)$ using the Künneth formula.]
(11) Consider the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in \mathbb{P}^{3} :

$$
\begin{gathered}
f: \mathbb{P}^{1} \times \mathbb{P}^{1} \xrightarrow{\sim} X \subset \mathbb{P}^{3}, \\
\left(\left(X_{0}: X_{1}\right),\left(Y_{0}: Y_{1}\right)\right) \mapsto\left(X_{0} Y_{0}: X_{1} Y_{0}: X_{0} Y_{1}: X_{1} Y_{1}\right) .
\end{gathered}
$$

Here the image X of f is the quadric surface $V\left(Z_{00} Z_{11}-Z_{10} Z_{01}\right) \subset \mathbb{P}^{3}$.
Let $p=(0: 0: 0: 1) \in X$ and consider the morphism

$$
g: X \backslash\{p\} \rightarrow \mathbb{P}^{2}, \quad\left(Z_{00}: Z_{10}: Z_{01}: Z_{11}\right) \mapsto\left(Z_{00}: Z_{10}: Z_{01}\right)
$$

Let $\pi_{X}: \tilde{X} \rightarrow X$ be the blowup of X at the point p and write $E=$ $\pi_{X}^{-1}(p)$.
Show that the composition $g \circ \pi_{X}: \tilde{X} \backslash E \rightarrow \mathbb{P}^{2}$ extends to a morphism $h: \tilde{X} \rightarrow \mathbb{P}^{2}$. Show that there is an open set $U \subset \mathbb{P}^{2}$ such that h restricts to an isomorphism $h^{-1}(U) \xrightarrow{\sim} U$, find the largest such open set U, and determine the fibers $h^{-1}(q)$ of h for $q \notin U$.
[Hint: $\tilde{X} \subset \widetilde{\mathbb{P}^{3}} \subset \mathbb{P}^{3} \times \mathbb{P}^{2}$, cf. Q10.]

