Math 797W Homework 2

Paul Hacking

November 28, 2016

We work over an algebraically closed field k.

- (1) Let $f: X \to Y$ be a morphism from a projective variety X to an affine variety Y. Show that f(X) is a point.
- (2) Consider the morphism

$$f: \mathbb{P}^1 \to \mathbb{P}^3, \quad (X_0: X_1) \mapsto (X_0^3: X_0^2 X_1: X_0 X_1^2: X_1^3).$$

Let $X = f(\mathbb{P}^1) \subset \mathbb{P}^3$, the rational normal curve of degree 3.

(a) Show that X = V(J) where

$$J := (Y_0 Y_2 - Y_1^2, Y_1 Y_3 - Y_2^2, Y_0 Y_3 - Y_1 Y_2).$$

(b) Prove that J is the kernel of the ring homomorphism

 $k[Y_0, Y_1, Y_2, Y_3] \to k[X_0, X_1], \quad Y_0, Y_1, Y_2, Y_3 \mapsto X_0^3, X_0^2 X_1, X_0 X_1^2, X_1^3.$ Deduce that J is prime and hence J = I(X).

(3) Let

$$f \colon \mathbb{P}^2 \xrightarrow{\sim} X \subset \mathbb{P}^5$$
$$(X_0 : X_1 : X_2) \mapsto (X_0^2 : X_1^2 : X_2^2 : X_0 X_1 : X_0 X_2 : X_1 X_2)$$

be the Veronese surface in \mathbb{P}^5 (the second Veronese embedding of \mathbb{P}^2).

(a) Show that f induces a bijective correspondence between hyperplanes H in \mathbb{P}^5 and curves $Y = V(F) \subset \mathbb{P}^2$, where $F \in k[X_0, X_1, X_2]$ is a homogeneous polynomial of degree 2, via $H \mapsto f^{-1}H$. (Note: F need not be irreducible.)

- (b) Deduce that, for $Y \subset \mathbb{P}^2$ as in (a), the open subset $U := \mathbb{P}^2 \setminus Y \subset \mathbb{P}^2$ is isomorphic to an affine variety.
- (c) More generally, show that if $X \subset \mathbb{P}^n$ is a projective variety, and $Y = V(F) \subset \mathbb{P}^n$ where $F \in k[X_0, \ldots, X_n]$ is a homogeneous polynomial of some degree d, then the open subset $U := X \setminus Y \subset X$ is isomorphic to an affine variety.
- (4) Assume char(k) $\neq 2$. Let $X = V(y^2 f(x)) \subset \mathbb{A}^2_{x,y}$ where $f \in k[x]$ is a polynomial of degree $d \geq 1$ with distinct roots.
 - (a) Show that X is smooth.
 - (b) Let \overline{X} denote the closure of X in \mathbb{P}^2 . Compute the homogeneous equation of \overline{X}
 - (c) Determine the set $\overline{X} \setminus X$ for $d \ge 3$.
 - (d) Show that \overline{X} is not smooth if $d \ge 4$.
- (5) Let $F \in k[X_0, \ldots, X_n]$ be an irreducible homogeneous polynomial of degree d in n + 1 variables, for some $n \ge 2$, and $X = V(F) \subset \mathbb{P}^n$ the associated projective hypersurface. Assume that $\operatorname{char}(k)$ does not divide d.
 - (a) Prove Euler's formula

$$\sum_{i=0}^{n} X_i \cdot \frac{\partial F}{\partial X_i} = d \cdot F.$$

(b) Show that the singular locus of X is given by

$$\operatorname{Sing}(X) = V\left(\frac{\partial F}{\partial X_0}, \cdots, \frac{\partial F}{\partial X_n}\right) \subset \mathbb{P}^n$$

- (c) Show that if $F = X_0^d + X_1^d + \dots + X_n^d$ then X is smooth.
- (d) Suppose d = 2. Then, by the classification of quadratic forms, after a linear change of homogeneous coordinates on \mathbb{P}^n we may assume that $F = X_0^2 + X_1^2 + \cdots + X_m^2$, where $m \leq n$. (Here m + 1 is the rank of the quadratic form F.)
 - i. Show that $X_0^2 + \cdots + X_m^2$ is irreducible iff $m \ge 2$.

- ii. Show that X is smooth iff m = n and identify the singular locus for m < n.
- iii. Deduce that two smooth quadric hypersurfaces of the same dimension are isomorphic. In particular, for X a smooth quadric hypersurface in \mathbb{P}^n , if n = 2 then $X \simeq \mathbb{P}^1$ and if n = 3 then $X \simeq \mathbb{P}^1 \times \mathbb{P}^1$ (why?).
- (e) Assume char(k) = 0 and d > 2. Show that if $F = X_0^{d-1}X_1 + X_1^{d-1}X_2 + \dots + X_n^{d-1}X_0$ then X is smooth.
- (6) Let $X \subset \mathbb{P}^4$ be a projective hypersurface of degree d > 1. Suppose that X contains a plane $\Pi \subset \mathbb{P}^4$ (a projective linear subspace of dimension 2). Show that X is necessarily singular.
- (7) Let $\pi: \widetilde{\mathbb{A}^n} \to \mathbb{A}^n$ denote the blowup of the origin in \mathbb{A}^n . That is,

$$\widetilde{\mathbb{A}^n} = V(\{x_i X_j - x_j X_i \mid 1 \le i < j \le n\}) \subset \mathbb{A}^n_{x_1, \dots, x_n} \times \mathbb{P}^{n-1}_{(X_1:\dots:X_n)},$$

and the morphism $\pi \colon \widetilde{\mathbb{A}^n} \to \mathbb{A}^n$ is the restriction of the first projection $\mathbb{A}^n \times \mathbb{P}^{n-1} \to \mathbb{A}^n$.

- (a) Show that \mathbb{A}^n is covered by *n* affine open subsets, each isomorphic to \mathbb{A}^n , and describe the restriction of π to each chart explicitly.
- (b) Show that $E := \pi^{-1}(0)$ is isomorphic to \mathbb{P}^{n-1} and that $\widetilde{\mathbb{A}^n} \setminus E \to \mathbb{A}^n \setminus \{0\}$ is an isomorphism. What is the defining equation of E in each chart?
- (c) Now suppose $X \subset \mathbb{A}^n$ is an affine variety and $p \in X$ is a point. We can define the blowup $\pi_X \colon \tilde{X} \to X$ of X at p as follows (we do *not* assume X is smooth at p here). We may assume (applying a translation) that $p = 0 \in \mathbb{A}^n$. Let

$$\tilde{X} := \overline{\pi^{-1}(X \setminus \{0\})} \subset \widetilde{\mathbb{A}^n},$$

the closure of the inverse image of $X \setminus \{0\}$, and let $\pi_X \colon \tilde{X} \to X$ be the restriction of π . Then, writing $F := \tilde{X} \cap E$, we have $F = \pi_X^{-1}(p)$ and π_X induces an isomorphism $\tilde{X} \setminus F \xrightarrow{\sim} X \setminus \{p\}$. (The closed subvariety $\tilde{X} \subset \widetilde{\mathbb{A}^n}$ is sometimes called the *strict* transform of X in $\widetilde{\mathbb{A}^n}$.) Show that if $k = \mathbb{C}$ then the morphism π_X is proper for the analytic topology. That is, if $K \subset X \subset \mathbb{C}^n$ is compact then $\pi_X^{-1}K \subset \tilde{X}$ is compact.

- (8) Let X be a variety over $k = \mathbb{C}$, and $S \subset X$ the set of singularities of X. A resolution of singularities is a morphism $f: Y \to X$ such that Y is a smooth variety, f restricts to an isomorphism $Y \setminus f^{-1}(S) \xrightarrow{\sim} X \setminus S$, and f is proper for the analytic topology. (For the last condition, see Q7. It rules out for example taking $Y = X \setminus S$ and f the inclusion.)
 - (a) Let $X = V(x^2 + y^2 + z^2) \subset \mathbb{A}^3_{x,y,z}$. Show that the blowup $\pi_X \colon \tilde{X} \to X$ of $0 \in X$ is a resolution of singularities, and that $F = \pi_X^{-1}(0)$ is isomorphic to \mathbb{P}^1 . [Hint: With notation as in Q7(c), what is the homogeneous equation of $F \subset E = \pi^{-1}(0) \simeq \mathbb{P}^2$?]
 - (b) (Optional) Let $X = V(xy z^n) \subset \mathbb{A}^3_{x,y,z}$, where $n \in \mathbb{N}$, $n \geq 2$. Show that there exists a resolution of singularities $f: Y \to X$ such that $f^{-1}(0)$ is a chain of n - 1 copies of \mathbb{P}^1 . That is, $f^{-1}(0) = C_1 \cup \cdots \cup C_{n-1}$ where each C_i is isomorphic to \mathbb{P}^1 , C_i and C_{i+1} meet transversely at a single point for each $1 \leq i < n-1$, and $C_i \cap C_j = \emptyset$ for |i-j| > 1.

[Hint: Blowup the singular point and use induction.]

(9) We say a polynomial $F \in k[X_0, \ldots, X_n, Y_0, \ldots, Y_m]$ is bihomogeneous of degree (d, e) if it is homogeneous of degree d in the X variables and homogeneous of degree e in the Y variables, that is,

$$F = \sum_{\substack{i_0 + \dots + i_n = d \\ j_0 + \dots + j_m = e}} a_{i_0 \dots i_n j_0 \dots j_m} X_0^{i_0} \dots X_n^{i_n} Y_0^{j_0} \dots Y_m^{j_m}$$

Similarly to the case of \mathbb{P}^n , closed subsets of $\mathbb{P}^n \times \mathbb{P}^m$ are defined by ideals generated by bihomogeneous polynomials.

Now consider $\mathbb{P}^1 \times \mathbb{P}^1$ and $F \in k[X_0, X_1, Y_0, Y_1]$ an irreducible bihomogeneous polynomial of degree (d, e).

(a) Consider the projective variety $X := V(F) \subset \mathbb{P}^1 \times \mathbb{P}^1$. Show that for any $p \in \mathbb{P}^1$ the intersection $X \cap \{p\} \times \mathbb{P}^1$ consists of e points counting multiplicities (unless d = 1, e = 0, and $X = \{p\} \times \mathbb{P}^1$) and similarly $X \cap \mathbb{P}^1 \times \{p\}$ consists of d points counting multiplicities (unless d = 0, e = 1, and $X = \mathbb{P}^1 \times \{p\}$). [This is similar to HW1Q11 so you need only explain briefly here.]

(b) Consider the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$ in \mathbb{P}^3 :

$$f: \mathbb{P}^1 \times \mathbb{P}^1 \xrightarrow{\sim} Y \subset \mathbb{P}^3,$$
$$((X_0: X_1), (Y_0: Y_1)) \mapsto (X_0 Y_0: X_1 Y_0: X_0 Y_1: X_1 Y_1).$$

Show that f(X) is equal to the intersection of Y with a hypersurface $V(G) \subset \mathbb{P}^3$ defined by some homogeneous polynomial $G \in k[Z_{00}, Z_{10}, Z_{01}, Z_{11}]$ iff d = e.

(10) Let $\pi: \widetilde{\mathbb{P}^2} \to \mathbb{P}^2$ be the blowup of \mathbb{P}^2 at the point p = (1:0:0). Explicitly, we can identify $\widetilde{\mathbb{P}^2}$ with

$$X = V(X_1Y_2 - X_2Y_1) \subset \mathbb{P}^2_{(X_0:X_1:X_2)} \times \mathbb{P}^1_{(Y_1:Y_2)}$$

so that the morphism $\pi: \widetilde{\mathbb{P}^2} \to \mathbb{P}^2$ is given by the restriction of the first projection $\mathbb{P}^2 \times \mathbb{P}^1 \to \mathbb{P}^2$. Then, under the Segre embedding

$$f: \mathbb{P}^2 \times \mathbb{P}^1 \xrightarrow{\sim} Y \subset \mathbb{P}^5$$

 $((X_0: X_1: X_2), (Y_1: Y_2)) \mapsto (X_0Y_1: X_1Y_1: X_2Y_1: X_0Y_2: X_1Y_2: X_2Y_2)$ we have $Z := f(X) = Y \cap H$ where $H \subset \mathbb{P}^5$ is the hyperplane $H = V(Z_{12} - Z_{21})$. Thus, identifying $H = \mathbb{P}^4_{(Z_{01}:Z_{11}:Z_{02}:Z_{12}:Z_{22})}$, we have an embedding $Z \subset \mathbb{P}^4$. The projective variety $Z \subset \mathbb{P}^4$ is called the *cubic* scroll.

- (a) Let $E = \pi^{-1}(p) \subset X$. Let $L = V(X_0) \subset \mathbb{P}^2$ and $L' = \pi^{-1}(L) \subset X$ (note that $p \notin L$). Show that f(E) is a line in \mathbb{P}^4 and f(L') is a smooth conic in a plane in \mathbb{P}^4 (where the line and the plane in \mathbb{P}^4 are disjoint).
- (b) For M a line in \mathbb{P}^2 passing through p, let $M' := \overline{\pi^{-1}(M \setminus \{p\})}$ be the strict transform of M. Equivalently, we have the morphism $g \colon X \to \mathbb{P}^1$ given by the restriction of the second projection $\mathbb{P}^2 \times \mathbb{P}^1 \to \mathbb{P}^1$, and as M varies the curves $M' \subset X$ are precisely the fibers of the morphism g. Show that M' maps to the line in \mathbb{P}^4 connecting the two points $f(E \cap M')$ and $f(L' \cap M')$.

- (c) Deduce that there is an isomorphism $\varphi \colon E \xrightarrow{\sim} L'$ such that Z = f(X) is the disjoint union of the lines L_p connecting the points p and $\varphi(p)$ for $p \in E \simeq \mathbb{P}^1$.
- (d) (Optional) Show that the degree of $Z \subset \mathbb{P}^4$ equals 3. [Hint: Recall that for $X \subset \mathbb{P}^n$ a projective variety of dimension d, the degree of X equals the number of points in the intersection $X \cap H_1 \cap \cdots \cap H_d$ where $H_1, \ldots, H_d \subset \mathbb{P}^n$ are general hyperplanes (assuming char(k) = 0). More generally, whenever $X \cap H_1 \cap \cdots \cap H_d$ is a finite set, the degree of X is equal to the number of points counted with multiplicities. One approach in our case: show that $Z \cap V(Z_{02}) = L' + V(Y_2)$ and $Z \cap V(Z_{11}) = E + 2 \cdot V(Y_1)$, so that the intersection $Z \cap V(Z_{02}) \cap V(Z_{11})$ consists of 1 + 2 = 3points counting multiplicities. Another approach (assuming $k = \mathbb{C}$): compute the intersection number in $H_*(\mathbb{P}^2 \times \mathbb{P}^1, \mathbb{Z})$ using the Künneth formula.]
- (11) Consider the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$ in \mathbb{P}^3 :

$$f\colon \mathbb{P}^1\times \mathbb{P}^1 \xrightarrow{\sim} X \subset \mathbb{P}^3,$$

$$((X_0:X_1),(Y_0:Y_1)) \mapsto (X_0Y_0:X_1Y_0:X_0Y_1:X_1Y_1).$$

Here the image X of f is the quadric surface $V(Z_{00}Z_{11} - Z_{10}Z_{01}) \subset \mathbb{P}^3$. Let $p = (0:0:0:1) \in X$ and consider the morphism

$$g: X \setminus \{p\} \to \mathbb{P}^2, \quad (Z_{00}: Z_{10}: Z_{01}: Z_{11}) \mapsto (Z_{00}: Z_{10}: Z_{01}).$$

Let $\pi_X \colon \tilde{X} \to X$ be the blowup of X at the point p and write $E = \pi_X^{-1}(p)$.

Show that the composition $g \circ \pi_X \colon \tilde{X} \setminus E \to \mathbb{P}^2$ extends to a morphism $h \colon \tilde{X} \to \mathbb{P}^2$. Show that there is an open set $U \subset \mathbb{P}^2$ such that h restricts to an isomorphism $h^{-1}(U) \xrightarrow{\sim} U$, find the largest such open set U, and determine the fibers $h^{-1}(q)$ of h for $q \notin U$.

[Hint: $\tilde{X} \subset \widetilde{\mathbb{P}^3} \subset \mathbb{P}^3 \times \mathbb{P}^2$, cf. Q10.]