
Math 797W Homework 2

Paul Hacking

November 28, 2016

We work over an algebraically closed field k.

(1) Let f : X → Y be a morphism from a projective variety X to an affine
variety Y . Show that f(X) is a point.

(2) Consider the morphism

f : P1 → P3, (X0 : X1) 7→ (X3
0 : X2

0X1 : X0X
2
1 : X3

1 ).

Let X = f(P1) ⊂ P3, the rational normal curve of degree 3.

(a) Show that X = V (J) where

J := (Y0Y2 − Y 2
1 , Y1Y3 − Y 2

2 , Y0Y3 − Y1Y2).

(b) Prove that J is the kernel of the ring homomorphism

k[Y0, Y1, Y2, Y3]→ k[X0, X1], Y0, Y1, Y2, Y3 7→ X3
0 , X

2
0X1, X0X

2
1 , X

3
1 .

Deduce that J is prime and hence J = I(X).

(3) Let
f : P2 ∼−→ X ⊂ P5

(X0 : X1 : X2) 7→ (X2
0 : X2

1 : X2
2 : X0X1 : X0X2 : X1X2)

be the Veronese surface in P5 (the second Veronese embedding of P2).

(a) Show that f induces a bijective correspondence between hyper-
planesH in P5 and curves Y = V (F ) ⊂ P2, where F ∈ k[X0, X1, X2]
is a homogeneous polynomial of degree 2, via H 7→ f−1H. (Note:
F need not be irreducible.)
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(b) Deduce that, for Y ⊂ P2 as in (a), the open subset U := P2 \ Y ⊂
P2 is isomorphic to an affine variety.

(c) More generally, show that if X ⊂ Pn is a projective variety, and
Y = V (F ) ⊂ Pn where F ∈ k[X0, . . . , Xn] is a homogeneous
polynomial of some degree d, then the open subset U := X\Y ⊂ X
is isomorphic to an affine variety.

(4) Assume char(k) 6= 2. Let X = V (y2 − f(x)) ⊂ A2
x,y where f ∈ k[x] is

a polynomial of degree d ≥ 1 with distinct roots.

(a) Show that X is smooth.

(b) Let X denote the closure of X in P2. Compute the homogeneous
equation of X

(c) Determine the set X \X for d ≥ 3.

(d) Show that X is not smooth if d ≥ 4.

(5) Let F ∈ k[X0, . . . , Xn] be an irreducible homogeneous polynomial of
degree d in n + 1 variables, for some n ≥ 2, and X = V (F ) ⊂ Pn

the associated projective hypersurface. Assume that char(k) does not
divide d.

(a) Prove Euler’s formula

n∑
i=0

Xi ·
∂F

∂Xi

= d · F.

(b) Show that the singular locus of X is given by

Sing(X) = V

(
∂F

∂X0

, · · · , ∂F
∂Xn

)
⊂ Pn

(c) Show that if F = Xd
0 +Xd

1 + · · ·+Xd
n then X is smooth.

(d) Suppose d = 2. Then, by the classification of quadratic forms,
after a linear change of homogeneous coordinates on Pn we may
assume that F = X2

0 +X2
1 + · · ·+X2

m, where m ≤ n. (Here m+ 1
is the rank of the quadratic form F .)

i. Show that X2
0 + · · ·+X2

m is irreducible iff m ≥ 2.
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ii. Show that X is smooth iff m = n and identify the singular
locus for m < n.

iii. Deduce that two smooth quadric hypersurfaces of the same
dimension are isomorphic. In particular, for X a smooth
quadric hypersurface in Pn, if n = 2 then X ' P1 and if
n = 3 then X ' P1 × P1 (why?).

(e) Assume char(k) = 0 and d > 2. Show that if F = Xd−1
0 X1 +

Xd−1
1 X2 + · · ·+Xd−1

n X0 then X is smooth.

(6) Let X ⊂ P4 be a projective hypersurface of degree d > 1. Suppose that
X contains a plane Π ⊂ P4 (a projective linear subspace of dimension
2). Show that X is necessarily singular.

(7) Let π : Ãn → An denote the blowup of the origin in An. That is,

Ãn = V ({xiXj − xjXi | 1 ≤ i < j ≤ n}) ⊂ An
x1,...,xn

× Pn−1
(X1:···:Xn)

,

and the morphism π : Ãn → An is the restriction of the first projection
An × Pn−1 → An.

(a) Show that Ãn is covered by n affine open subsets, each isomorphic
to An, and describe the restriction of π to each chart explicitly.

(b) Show that E := π−1(0) is isomorphic to Pn−1 and that Ãn \ E →
An \ {0} is an isomorphism. What is the defining equation of E
in each chart?

(c) Now suppose X ⊂ An is an affine variety and p ∈ X is a point.
We can define the blowup πX : X̃ → X of X at p as follows (we
do not assume X is smooth at p here). We may assume (applying
a translation) that p = 0 ∈ An. Let

X̃ := π−1(X \ {0}) ⊂ Ãn,

the closure of the inverse image of X \ {0}, and let πX : X̃ → X
be the restriction of π. Then, writing F := X̃ ∩ E, we have
F = π−1X (p) and πX induces an isomorphism X̃ \ F ∼−→ X \ {p}.
(The closed subvariety X̃ ⊂ Ãn is sometimes called the strict

transform of X in Ãn.)
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Show that if k = C then the morphism πX is proper for the
analytic topology. That is, if K ⊂ X ⊂ Cn is compact then
π−1X K ⊂ X̃ is compact.

(8) Let X be a variety over k = C, and S ⊂ X the set of singularities of X.
A resolution of singularities is a morphism f : Y → X such that Y is
a smooth variety, f restricts to an isomorphism Y \ f−1(S)

∼−→ X \ S,
and f is proper for the analytic topology. (For the last condition, see
Q7. It rules out for example taking Y = X \ S and f the inclusion.)

(a) Let X = V (x2+y2+z2) ⊂ A3
x,y,z. Show that the blowup πX : X̃ →

X of 0 ∈ X is a resolution of singularities, and that F = π−1X (0)
is isomorphic to P1.

[Hint: With notation as in Q7(c), what is the homogeneous equa-
tion of F ⊂ E = π−1(0) ' P2?]

(b) (Optional) Let X = V (xy − zn) ⊂ A3
x,y,z, where n ∈ N, n ≥ 2.

Show that there exists a resolution of singularities f : Y → X such
that f−1(0) is a chain of n − 1 copies of P1. That is, f−1(0) =
C1 ∪ · · · ∪ Cn−1 where each Ci is isomorphic to P1, Ci and Ci+1

meet transversely at a single point for each 1 ≤ i < n − 1, and
Ci ∩ Cj = ∅ for |i− j| > 1.

[Hint: Blowup the singular point and use induction.]

(9) We say a polynomial F ∈ k[X0, . . . , Xn, Y0, . . . , Ym] is bihomogeneous
of degree (d, e) if it is homogeneous of degree d in the X variables and
homogeneous of degree e in the Y variables, that is,

F =
∑

i0+···+in=d
j0+···+jm=e

ai0···inj0···jmX
i0
0 · · ·X in

n Y
j0
0 · · ·Y jm

m

Similarly to the case of Pn, closed subsets of Pn × Pm are defined by
ideals generated by bihomogeneous polynomials.

Now consider P1× P1 and F ∈ k[X0, X1, Y0, Y1] an irreducible bihomo-
geneous polynomial of degree (d, e).

(a) Consider the projective variety X := V (F ) ⊂ P1 × P1. Show that
for any p ∈ P1 the intersection X ∩ {p} × P1 consists of e points
counting multiplicities (unless d = 1, e = 0, andX = {p}×P1) and
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similarly X ∩ P1 × {p} consists of d points counting multiplicities
(unless d = 0, e = 1, and X = P1 × {p}). [This is similar to
HW1Q11 so you need only explain briefly here.]

(b) Consider the Segre embedding of P1 × P1 in P3:

f : P1 × P1 ∼−→ Y ⊂ P3,

((X0 : X1), (Y0 : Y1)) 7→ (X0Y0 : X1Y0 : X0Y1 : X1Y1).

Show that f(X) is equal to the intersection of Y with a hyper-
surface V (G) ⊂ P3 defined by some homogeneous polynomial
G ∈ k[Z00, Z10, Z01, Z11] iff d = e.

(10) Let π : P̃2 → P2 be the blowup of P2 at the point p = (1 : 0 : 0).

Explicitly, we can identify P̃2 with

X = V (X1Y2 −X2Y1) ⊂ P2
(X0:X1:X2)

× P1
(Y1:Y2)

so that the morphism π : P̃2 → P2 is given by the restriction of the first
projection P2 × P1 → P2. Then, under the Segre embedding

f : P2 × P1 ∼−→ Y ⊂ P5

((X0 : X1 : X2), (Y1 : Y2)) 7→ (X0Y1 : X1Y1 : X2Y1 : X0Y2 : X1Y2 : X2Y2)

we have Z := f(X) = Y ∩ H where H ⊂ P5 is the hyperplane H =
V (Z12 − Z21). Thus, identifying H = P4

(Z01:Z11:Z02:Z12:Z22)
, we have an

embedding Z ⊂ P4. The projective variety Z ⊂ P4 is called the cubic
scroll.

(a) Let E = π−1(p) ⊂ X. Let L = V (X0) ⊂ P2 and L′ = π−1(L) ⊂ X
(note that p /∈ L). Show that f(E) is a line in P4 and f(L′) is a
smooth conic in a plane in P4 (where the line and the plane in P4

are disjoint).

(b) For M a line in P2 passing through p, let M ′ := π−1(M \ {p}) be
the strict transform of M . Equivalently, we have the morphism
g : X → P1 given by the restriction of the second projection P2 ×
P1 → P1, and as M varies the curves M ′ ⊂ X are precisely the
fibers of the morphism g. Show that M ′ maps to the line in P4

connecting the two points f(E ∩M ′) and f(L′ ∩M ′).
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(c) Deduce that there is an isomorphism ϕ : E
∼−→ L′ such that Z =

f(X) is the disjoint union of the lines Lp connecting the points p
and ϕ(p) for p ∈ E ' P1.

(d) (Optional) Show that the degree of Z ⊂ P4 equals 3.

[Hint: Recall that for X ⊂ Pn a projective variety of dimension
d, the degree of X equals the number of points in the intersection
X ∩H1 ∩ · · · ∩Hd where H1, . . . , Hd ⊂ Pn are general hyperplanes
(assuming char(k) = 0). More generally, wheneverX∩H1∩· · ·∩Hd

is a finite set, the degree of X is equal to the number of points
counted with multiplicities. One approach in our case: show that
Z ∩ V (Z02) = L′ + V (Y2) and Z ∩ V (Z11) = E + 2 · V (Y1), so
that the intersection Z ∩ V (Z02) ∩ V (Z11) consists of 1 + 2 = 3
points counting multiplicities. Another approach (assuming k =
C): compute the intersection number in H∗(P2 × P1,Z) using the
Künneth formula.]

(11) Consider the Segre embedding of P1 × P1 in P3:

f : P1 × P1 ∼−→ X ⊂ P3,

((X0 : X1), (Y0 : Y1)) 7→ (X0Y0 : X1Y0 : X0Y1 : X1Y1).

Here the image X of f is the quadric surface V (Z00Z11−Z10Z01) ⊂ P3.

Let p = (0 : 0 : 0 : 1) ∈ X and consider the morphism

g : X \ {p} → P2, (Z00 : Z10 : Z01 : Z11) 7→ (Z00 : Z10 : Z01).

Let πX : X̃ → X be the blowup of X at the point p and write E =
π−1X (p).

Show that the composition g ◦πX : X̃ \E → P2 extends to a morphism
h : X̃ → P2. Show that there is an open set U ⊂ P2 such that h restricts
to an isomorphism h−1(U)

∼−→ U , find the largest such open set U , and
determine the fibers h−1(q) of h for q /∈ U .

[Hint: X̃ ⊂ P̃3 ⊂ P3 × P2, cf. Q10.]
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