Math 797W Homework 1

Paul Hacking

September 19, 2016

We work over an algebraically closed field k (unless explicitly stated otherwise). Questions 1 and 2 are preliminary and will not be graded.
(1) We say a topological space X is irreducible if there does not exist a decomposition $X=X_{1} \cup X_{2}$ where $X_{1}, X_{2} \subsetneq X$ are closed subsets. Prove the following statements.
(a) X is irreducible iff for all non-empty open sets $U_{1}, U_{2} \subset X$ the intersection $U_{1} \cap U_{2}$ is non-empty.
(b) If X is irreducible and $U \subset X$ is a non-empty open set, then U is dense (that is, $\bar{U}=X$) and U is irreducible.
(c) If X is irreducible and $f: X \rightarrow Y$ is continuous then $f(X)$ is irreducible.
(d) If Y is irreducible, $Y \subset X$, and \bar{Y} is the closure of Y in X, then \bar{Y} is irreducible.
(e) If X has an open covering $X=\bigcup U_{i}$ where each U_{i} is irreducible and $U_{i} \cap U_{j} \neq \emptyset$ for all i and j, then X is irreducible.
(2) Let $f: X \rightarrow Y$ be a morphism of affine varieties and

$$
f^{*}: k[Y] \rightarrow k[X], \quad g \mapsto g \circ f
$$

the corresponding morphism of k-algebras. Recall that, for $J \subset k[X]$ an ideal we have $I(V(J))=\sqrt{J}$, the radical of J (Hilbert's Nullstellensatz). Verify the following statements.
(a) For $Z \subset X$ a subset, $V(I(Z))=\bar{Z}$ (the closure of Z in the Zariski topology).
(b) For $J \subset k[Y]$ an ideal, $f^{-1} V(J)=V\left(f^{*}(J)\right)$.
[Note: $f^{*}(J)$ is not necessarily an ideal of $k[X]$. But we can define $V(S)$ for any subset S of $k[X]$, then $V(S)=V(\langle S\rangle)$ where $\langle S\rangle \subset k[X]$ is the ideal generated by S.]
(c) For $Z \subset X$ a subset we have $I(f(Z))=f^{*-1} I(Z)$. In particular (using the case Z is a point), the map of sets $f: X \rightarrow Y$ corresponds to the map $\mathfrak{m} \mapsto f^{*-1}(\mathfrak{m})$ from maximal ideals of $k[X]$ to maximal ideals of $k[Y]$.
(d) For $J \subset k[X]$ an ideal, $\overline{f(V(J))}=V\left(f^{*-1} J\right)$. In particular, $\overline{f(X)}=Y$ iff f^{*} is injective.
(3) Let X be the union of the coordinate axes in \mathbb{A}^{3}.
(a) Compute the ideal $I(X) \subset k[x, y, z]$.
(b) Prove that $I(X)$ cannot be generated by 2 elements.
(c) Let $J=(x y,(x-y) z) \subset k[x, y, z]$. Show that $V(J)=X$. What is \sqrt{J} ?
(4) Let $J=\left(x^{2}+y^{2}+z^{2}, x y+y z+x z\right) \subset k[x, y, z]$ and $X=V(J) \subset \mathbb{A}^{3}$. Determine the irreducible components of X. What is \sqrt{J} ?
(5) Let X be an affine variety and $f \in k(X)$ a rational function on X. Define

$$
\operatorname{domain}(f)=\left\{p \in X \mid f \in \mathcal{O}_{X, p}\right\}
$$

(a) Prove domain $(f) \subset X$ is an open subset.
(b) Let $p \in X$. Suppose $f=g / h$, where $g, h \in k[X]$, and $g(p) \neq 0$, $h(p)=0$. Show that $p \notin \operatorname{domain}(f)$.
(c) Compute domain (f) in the following cases:
i. $X=V\left(x_{1}^{2}+x_{2}^{2}-1\right) \subset \mathbb{A}^{2}, f=\left(1-x_{2}\right) / x_{1}$.
ii. $X=V\left(x_{1} x_{3}-x_{2}^{2}\right) \subset \mathbb{A}^{3}, f=x_{1} / x_{2}$.
(6) Consider the morphism

$$
f: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}, \quad t \mapsto\left(t^{2}, t^{3}\right)
$$

(a) Show that $X:=f\left(\mathbb{A}^{1}\right) \subset \mathbb{A}^{2}$ is closed and find its ideal $I(X) \subset$ $k[x, y]$.
(b) Draw a sketch of X in the case $k=\mathbb{R}$, and observe that the origin is a singular point of X (there is no well-defined tangent line).
[WARNING: In general we don't allow non-algebraically closed fields, but it is sometimes useful for visualization to consider $k=$ \mathbb{R}.]
(c) One can also try to draw a (partial) sketch in the case $k=\mathbb{C}$ as follows. Consider the intersection of X with a small sphere $S^{3} \subset \mathbb{C}^{2}$ with center the origin. Show that the intersection $X \cap S^{3}$ is a trefoil knot in $S^{3}=\mathbb{R}^{3} \cup\{\infty\}$. This shows in particular that the origin is a singular point of X (otherwise $X \cap S^{3} \subset S^{3}$ would be an unknotted S^{1}).
[Hint: The intersection $X \cap S^{3}$ lies on one of the tori $S^{1} \times S^{1}$ in S^{3} defined by $|x|=a,|y|=\sqrt{r^{2}-a^{2}}$ for some $0<a<r$, where r is the radius of the sphere.]
(d) Show that the map $\mathbb{A}^{1} \rightarrow X$ is a homeomorphism of topological spaces (for the Zariski topology).
(e) Show that, via f^{*}, the coordinate ring $k[X]$ is identified with the subring of the polynomial ring $k\left[\mathbb{A}^{1}\right]=k[t]$ consisting of polynomials $g(t)$ such that $g^{\prime}(0)=0$.
(f) Show that f^{*} defines an isomorphism of the function fields $k(X) \xrightarrow{\sim}$ $k\left(\mathbb{A}^{1}\right)=k(t)$.
(g) Using (e) and (f) or otherwise, determine the integral closure of $k[X]$.
(7) Assume $\operatorname{char}(k) \neq 2$. Consider the morphism

$$
f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{3}, \quad\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)
$$

(a) Prove that $X:=f\left(\mathbb{A}^{2}\right) \subset \mathbb{A}^{3}$ is closed and find its ideal $I(X) \subset$ $k\left[y_{1}, y_{2}, y_{3}\right]$.
(b) Show that, as a topological space (for the Zariski topology), X is the quotient of \mathbb{A}^{2} by the action of $\mathbb{Z} / 2 \mathbb{Z}$ given by $\left(x_{1}, x_{2}\right) \mapsto$ $\left(-x_{1},-x_{2}\right)$.
(c) Show that, via f^{*}, the coordinate ring $k[X]$ is identified with the invariant ring $k\left[x_{1}, x_{2}\right]^{\mathbb{Z} / 2 \mathbb{Z}}$ of the group action on the coordinate ring $k\left[x_{1}, x_{2}\right]$ of \mathbb{A}^{2}. [Here for a group G acting on a ring R the
invariant ring R^{G} is the subring of R consisting of elements r such that $g \cdot r=r$ for all $g \in G$.] This implies that X is the quotient of \mathbb{A}^{2} by the group action as an algebraic variety.
[Hint / Remark: If $f: X \rightarrow Y$ is a morphism of affine varieties, we say that f is a finite morphism if the corresponding homomorphism of k-algebras $f^{*}: k[Y] \rightarrow k[X]$ gives $k[X]$ the structure of a finitely generated $k[Y]$-module. In this case, it follows from the "going up theorem" (cf. 612) that the morphism f is closed, that is, if $Z \subset X$ is closed then $f(Z) \subset Y$ is closed. Moreover, if $f: X \rightarrow Y$ is a finite morphism then $f^{-1}(p)$ is a finite set for all $p \in Y$. The morphisms f in questions 6 and 7 above are examples of finite morphisms.]
(8) For each of the following morphisms $f: X \rightarrow Y$, compute the image $f(X) \subset Y$ of f. Show that $f(X)$ is neither open nor closed in Y, and $f(X)=Y$. Describe the fiber $f^{-1}(p)$ of f over each point $p \in Y$.
(a) $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2},(x, y) \mapsto(x, x y)$.
(b) $f: \mathbb{A}^{3} \rightarrow \mathbb{A}^{3},(x, y, z) \mapsto(x, x y, x y z)$.
(9) (a) Let $J \subset S=k\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous ideal. Show that if J is not prime then there exist homogeneous elements $a, b \in S$ such that $a b \in J$ and $a, b \notin J$.
(b) Let $X \subset \mathbb{P}^{n}$ be an algebraic set. Show that X is irreducible iff $I(X) \subset S$ is prime.
(10) Let

$$
X=V\left(x_{1}^{3}+x_{1} x_{2}^{2}+x_{1}^{2}+x_{2}+1\right) \subset \mathbb{A}^{2} .
$$

Let \bar{X} denote the closure of X in

$$
\mathbb{P}^{2}=\left(X_{0} \neq 0\right) \sqcup\left(X_{0}=0\right)=\mathbb{A}^{2} \sqcup \mathbb{P}^{1}
$$

(a) Write down the homogeneous equation of \bar{X} and identify the set $\bar{X} \backslash X=\bar{X} \cap \mathbb{P}^{1}$.
(b) Find another affine chart $Y \subset \mathbb{A}^{2}$ for \bar{X} such that $\bar{X}=X \cup Y$, write down the equation of $Y \subset \mathbb{A}^{2}$, and describe the transition map between the two charts explicitly.
(11) Let $F \in k\left[X_{0}, X_{1}, X_{2}\right]$ be an irreducible homogeneous polynomial of degree d. Let $X=V(F) \subset \mathbb{P}^{2}$ be the associated projective variety, a projective plane curve of degree d. Let $L \subset \mathbb{P}^{2}$ be a line (that is, $L=V\left(a_{0} X_{0}+a_{1} X_{1}+a_{2} X_{2}\right) \subset \mathbb{P}^{2}$ is the zero locus of a linear form). Show that $X \cap L$ consists of exactly d points counting multiplicities (unless $d=1$ and $X=L$).
(12) Show directly using the standard affine charts that $\mathcal{O}_{X}(X)=k$ for $X=\mathbb{P}^{1}$.
(13) Let $X=V(f) \subset \mathbb{A}^{2}$. Suppose

$$
f=a_{1} x_{1}+a_{2} x_{2}+\cdots
$$

where \cdots denotes higher order terms in x_{1}, x_{2}, and $\left(a_{1}, a_{2}\right) \neq(0,0)$. (Geometrically, we have $(0,0) \in X$, and X is smooth at $(0,0)$ with tangent line $V\left(a_{1} x_{1}+a_{2} x_{2}\right) \subset \mathbb{A}^{2}$.) Consider the morphism

$$
q: \mathbb{A}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{P}^{1}, \quad\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}: x_{2}\right)
$$

(a) Show that the restriction of q to $X \backslash\{(0,0)\}$ extends to a morphism $g: X \rightarrow \mathbb{P}^{1}$.
(b) What is the geometric interpretation of the point $g(0,0) \in \mathbb{P}^{1}$?
(14) Let $n \in \mathbb{Z}$. Let $X=X(n)=U_{1} \cup U_{2}$ where $U_{1}=\mathbb{A}_{x_{1}, y_{1}}^{2}, U_{2}=\mathbb{A}_{x_{2}, y_{2}}^{2}$, and the glueing is given by

$$
U_{1} \supset\left(x_{1} \neq 0\right) \xrightarrow{\sim}\left(x_{2} \neq 0\right) \subset U_{2}, \quad\left(x_{1}, y_{1}\right) \mapsto\left(x_{1}^{-1}, x_{1}^{n} y_{1}\right) .
$$

(a) Show that $C \subset X$ defined by $C \cap U_{i}=V\left(y_{i}\right)$ for $i=1,2$ is a closed subvariety isomorphic to \mathbb{P}^{1}.
(b) Show that the morphisms

$$
p_{i}: U_{i} \rightarrow \mathbb{A}^{1}, \quad\left(x_{i}, y_{i}\right) \mapsto x_{i}
$$

patch to give a morphism $p: X \rightarrow \mathbb{P}^{1}$. Moreover there is a morphism $s: \mathbb{P}^{1} \rightarrow X$ such that $p \circ s=\operatorname{id}_{\mathbb{P}^{1}}$ and $s\left(\mathbb{P}^{1}\right)=C$.
(c) Compute $\mathcal{O}_{X}(X)$ as a subring of $k\left[x_{1}, y_{1}\right]$. For $n<0$, show that $\mathcal{O}_{X}(X)=k$. For $n \geq 0$, find an explicit set of $n+1$ generators for $\mathcal{O}_{X}(X)$ as a k-algebra.
(d) Let $f: X \rightarrow \mathbb{A}^{n+1}$ be the morphism defined by the generators for $\mathcal{O}_{X}(X)$ found in (c). Show that $f(X)$ is closed, $f(C)$ is a point, and the restriction of f to $X \backslash C$ is an isomorphism.
[Hint: If you are stuck, $\operatorname{try} n=1$ and $n=2$ first.]

