Math 797AS Homework 4

Paul Hacking

April 7, 2019
(1) (a) Let $X=(f=0) \subset \mathbb{C}^{n+1}$ be a smooth hypersurface. The tangent space $T_{p} X$ to X at a point p is identified with the affine hyperplane

$$
\left(\sum \frac{\partial f}{\partial z_{i}}(p)\left(z_{i}-z_{i}(p)\right)=0\right) \subset \mathbb{C}^{n+1} .
$$

Show that if H is a hyperplane in \mathbb{C}^{n+1} through $p \in X$, then the divisor $\left.H\right|_{X}$ has multiplicity ≥ 2 at p iff $H=T_{p} X$.
[Recall if X and Y are complex manifolds, $f: X \rightarrow Y$ is a holomorphic map, and D is a divisor on Y such that $f(X)$ is not contained in the support of D, then we define $f^{*} D$ as follows: let $U \subset Y$ be an open set such that $\left.D\right|_{U}$ is the principal divisor (g) associated to a meromorphic function g on U, then $\left.f^{*} D\right|_{f^{-1} U}:=(g \circ f)$. If f is a closed embedding we also write $\left.D\right|_{X}$ for $f^{*} D$. If D is an effective divisor on a complex manifold X and $p \in X$ is a point, we define the multiplicity mult $_{p} D$ of D at p as follows: in a small neighborhood of p the divisor D is the principal divisor (f) associated to a holomorphic function f; expand f as a power series $\sum a_{i_{1} \cdots i_{n}} z_{1}^{i_{1}} \cdots z_{n}^{i_{n}}$ in local coordinates z_{1}, \ldots, z_{n} at p, then $\operatorname{mult}_{p} D:=\min \left\{\sum i_{j} \mid a_{i_{1}, \ldots, i_{n}} \neq 0\right\}$.]
(b) Suppose $X \subset \mathbb{P}_{\left(Z_{0}: Z_{1}: Z_{2}: Z_{3}\right)}^{3}$ is a smooth hypersurface of degree d which contains the line $L=\left(Z_{0}=Z_{1}=0\right) \subset \mathbb{P}^{3}$. Show that the rational map $\varphi: X \rightarrow \mathbb{P}^{1}$ defined by $\left(Z_{0}: Z_{1}\right)$ is a morphism.
[Hint: The rational map φ is defined by the linear system δ of hyperplane sections $\left.H\right|_{X}$ of X containing L. Each element $D=$ $\left.H\right|_{X} \in \delta$ can be written as $L+M$ for some divisor M on X with support contained in H. So the fixed divisor of the linear system
δ is the line L, and (removing the fixed divisor) the linear system δ^{\prime} given by the curves M defines the same rational map. Now use part (a) to show that the linear system δ^{\prime} has no basepoints (that is, for all $p \in X$ there exists $M \in \delta^{\prime}$ such that $\left.p \notin M\right)$ so that φ is a morphism.]
(c) Let $X \subset \mathbb{P}^{3}$ be a smooth hypersurface of degree 4 and suppose that X contains a line L. Show that there is a morphism $X \rightarrow \mathbb{P}^{1}$ such that the general fiber is a smooth curve of genus 1 .
[Note: The general fiber is smooth by Sard's theorem.]
(2) Let $X=\mathbb{C}^{2}$ and $\pi: \tilde{X} \rightarrow X$ be the blowup of the point $p=(0,0) \in X$. Let $p \in C \subset X$ be a curve. Recall that the strict transform $C^{\prime} \subset \tilde{X}$ of C is defined by $C^{\prime}=\overline{\pi^{-1}(C \backslash\{p\})}$. For each of the following curves C, use the explicit description of the blowup π in charts to compute the strict transform C^{\prime} and verify that C^{\prime} is smooth.
(a) $C=\left(z_{2}^{2}=z_{1}^{2}\left(z_{1}+1\right)\right)$.
(b) $C=\left(z_{2}^{2}=z_{1}^{3}\right)$.
(3) Let $\varphi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be the Cremona transformation $\left(Z_{0}: Z_{1}: Z_{2}\right) \mapsto$ $\left(Z_{1} Z_{2}: Z_{0} Z_{2}: Z_{0} Z_{1}\right)$.
(a) Show that $\varphi^{2}=$ id. In particular, φ is a birational map.
(b) Compute the base locus of the linear system δ defining φ.
(c) Let $\pi: X \rightarrow \mathbb{P}^{2}$ denote the composition of the blow ups of the base points of δ. Show that there is a morphism $\tilde{\varphi}: X \rightarrow \mathbb{P}^{2}$ such that $\tilde{\varphi}=\varphi \circ \pi$.
(d) Show that $\tilde{\varphi}$ contracts the strict transforms of the coordinate lines $\left(Z_{0}=0\right),\left(Z_{1}=0\right),\left(Z_{2}=0\right)$ to the points $(1: 0: 0),(0: 1: 0),(0:$ $0: 1)$ and has no other exceptional curves.
(e) Show that the exceptional curves of $\tilde{\varphi}$ are (-1)-curves. (Recall that we say a curve E on a smooth surface S is a (-1)-curve if $E \simeq \mathbb{P}^{1}$ and $E^{2}=-1$.) So, by the Castelnuovo contractibility criterion, $\tilde{\varphi}$ is a composition of blowups.
(4) Let $\varphi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ be the rational map $\left(\left(X_{0}: X_{1}\right),\left(Y_{0}: Y_{1}\right)\right) \mapsto$ $\left(X_{0} Y_{0}: X_{1} Y_{0}: X_{0} Y_{1}\right)$.
(a) Show that φ is a birational map by finding an explicit formula for its inverse ψ (use the Segre embedding
$\iota: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}, \quad\left(\left(X_{0}: X_{1}\right),\left(Y_{0}: Y_{1}\right)\right) \mapsto\left(X_{0} Y_{0}: X_{1} Y_{0}: X_{0} Y_{1}: X_{1} Y_{1}\right)$
and express ψ as a rational map $\mathbb{P}^{2} \rightarrow \mathbb{P}^{3}$ which factors through $\left.\iota\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)\right)$.
(b) Compute the base locus of the linear system δ defining φ.
(c) Let $\pi: X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ be the blowup of the base points of φ. Show that there is a morphism $\tilde{\varphi}: X \rightarrow \mathbb{P}^{2}$ such that $\tilde{\varphi}=\varphi \circ \pi$.
(d) Show that $\tilde{\varphi}$ contracts the strict transforms of the curves ($X_{0}=$ $0),\left(Y_{0}=0\right) \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ to the points $(0: 1: 0),(0: 0: 1)$ and has no other exceptional curves.
(e) Show that the exceptional curves of $\tilde{\varphi}$ are (-1)-curves.
(a) Let X be a smooth projective surface and $\pi: \tilde{X} \rightarrow X$ the blowup of a point on X. Show that $K_{\tilde{X}}^{2}=K_{X}^{2}-1$.
(b) Now let $X \subset \mathbb{P}^{3}$ be a smooth cubic surface.
i. Show that $-K_{X}$ is very ample, and compute $\left(-K_{X}\right)^{2}$. [Hint: Use the adjunction formula for $X \subset \mathbb{P}^{3}$.]
ii. Recall that in class we showed that there is a birational morphism $X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ (assuming the existence of two skew lines $L_{1}, L_{2} \subset X$; see [UAG], Chapter 7 for the proof of this fact). Moreover, we showed that any birational morphism $f: X \rightarrow Y$ of smooth projective surfaces is a composition of blowups. Using part (a) deduce that X is isomorphic to the blowup of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in 5 points or, equivalently (by Q4), the blowup of \mathbb{P}^{2} in 6 points.
iii. Now suppose Y is the blowup of six points in \mathbb{P}^{2}. Show that if $-K_{Y}$ is ample then no two of the points coincide, no three are collinear, and there does not exist a conic passing through all six points. (Conversely, if these conditions are satisfied then $-K_{Y}$ is very ample and the linear system $\left|-K_{Y}\right|$ defines an embedding of Y in \mathbb{P}^{3} with image a cubic surface. See e.g [GH78], p. 480-483.)
[Hint: Show that if one of the conditions fails then Y contains a curve C such that $C \simeq \mathbb{P}^{1}$ and $C^{2} \leq-2$. Then $-K_{Y} \cdot C \leq 0$ (why?) so $-K_{Y}$ is not ample (why?).]
(6) Let $\varphi: X \rightarrow Y \subset \mathbb{P}^{m}$ be a rational map from a smooth projective surface X to a projective variety Y defined by a linear system $\delta \subset|D|$ without fixed divisors. We showed in class that there is a composition of blowups $\pi: \tilde{X} \rightarrow X$ and a morphism $\tilde{\varphi}: \tilde{X} \rightarrow Y$ such that $\tilde{\varphi}=\varphi \circ \pi$. Prove that at most D^{2} blowups are required.
(7) Let $X \subset \mathbb{P}^{3}$ be a smooth surface of degree d. Suppose that X contains a line $L \subset \mathbb{P}^{3}$. Show that, regarding L as a curve on X, its selfintersection number $L \cdot L$ is given by $L^{2}=-(d-2)$.
[Hint: Let $H \subset \mathbb{P}^{3}$ be a general hyperplane containing L and consider $\left.H\right|_{X}=L+Y$. Alternatively, use the adjunction formula.]
(8) Let $a, b \in \mathbb{N}$. Let $p \in C \subset X$ be a germ of a curve on a smooth surface such that for some choice of local coordinates at $p \in X$ the curve C has local equation $z_{1}^{a}=z_{2}^{b}$. Compute the normalization $\nu: \tilde{C} \rightarrow C$ of C.
[Hint: Use the analytic construction of the normalization described in class, cf. [GH78], p. 498-500. Note that the germ $(p \in C)$ is irreducible iff $\operatorname{gcd}(a, b)=1$ (why?).]
(9) Let $C \subset \mathbb{P}^{2}$ be an irreducible plane curve of degree 5 with a unique singularity $p \in C$. Suppose that for some choice of local analytic coordinates z_{1}, z_{2} at $p \in \mathbb{P}^{2}$ the curve C has local equation $z_{1}^{2}=z_{2}^{n}$. Show that $n \leq 13$.
[Remark: In fact this bound is sharp by [W96], see p. 268, case G4.]

References

[GH78] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, 1978.
[UAG] M. Reid, Undergraduate algebraic geometry, C.U.P., 1988; available on the author's website at https://homepages. warwick.ac.uk/staff/Miles.Reid/MA4A5/UAG.pdf.
[W96] C. Wall, Highly singular quintic curves, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 2, 257-277.

