Math 797AS Homework 3

Paul Hacking

April 7, 2019
(1) Let X be a compact complex curve (or Riemann surface) and $L \rightarrow X$ a holomorphic line bundle. We define the degree of L as follows: Let s be a generic C^{∞} section of L. For each zero $p \in X$ of s, we assign a sign as follows: let $z=x+i y$ be a local coordinate at p and choose a local trivialization of $\phi:\left.L\right|_{U} \rightarrow U \times \mathbb{C}$ in a neighbourhood U of p, so that $\phi(s(q))=(q, f(q))$ for $q \in U$, where $f=u+i v: U \rightarrow \mathbb{C}$ is a C^{∞} function. Then the sign of p is given by the sign of the determinant of the Jacobian matrix

$$
\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right) .
$$

The degree of L is then defined to be the signed count of the zeroes of s. (Equivalently, $\operatorname{deg} L$ is the intersection number of $s(X)$ and the zero section of L, where both sections are given the orientations induced by the orientation of X.) In terms of the first Chern class, $\operatorname{deg} L \in \mathbb{Z}$ is equal to $c_{1}(L) \in H^{2}(X, \mathbb{Z})$ where we identify $H^{2}(X, \mathbb{Z})=H_{0}(X, \mathbb{Z})=\mathbb{Z}$ using the orientation of X and Poincaré duality.
(a) If s is a meromorphic section of L and $(s)=\sum n_{i} p_{i}$ is the divisor of zeroes and poles of s, show that $\operatorname{deg} L$ equals the degree $\sum n_{i}$ of (s), that is, the number of zeroes minus the number of poles of s, counting multiplicities.
[Hints: (1) If L has a meromorphic section s with $(s)=D$, then $\mathcal{L} \simeq \mathcal{O}_{X}(D)$. (2) The maps $\mathrm{Cl}(X) \rightarrow \operatorname{Pic} X, D \mapsto \mathcal{O}_{X}(D)$ and $\operatorname{deg}: \operatorname{Pic}(X) \rightarrow \mathbb{Z}$ are group homomorphisms. (3) The case $(s)=$ p follows from the definition of degree.]
(b) Deduce that if $\operatorname{deg} L<0$ then $H^{0}(X, L)=0$
(2) Let X be a compact complex curve of genus g. Let $L \rightarrow X$ be a holomorphic line bundle. Assume that L admits a meromorphic section s, so that $\mathcal{L} \simeq \mathcal{O}_{X}(D)$ where $D=(s)$. (Remark: Existence of a meromorphic section holds because X is projective by the Kodaira embedding theorem, cf. GH78], p. 213-4.)
(a) Use the exact sequence of sheaves

$$
0 \rightarrow \mathcal{O}_{X}(D-p) \rightarrow \mathcal{O}_{X}(D) \rightarrow \mathbb{C}(p) \rightarrow 0
$$

(cf. HW2Q3b) and induction to prove the Riemann-Roch formula in the form

$$
\chi(\mathcal{L})=\chi\left(\mathcal{O}_{X}\right)+\operatorname{deg} L
$$

(b) Use the Dolbeault theorem $H^{q}\left(\Omega_{X}^{p}\right) \simeq H^{p, q}$ to prove $\chi\left(\mathcal{O}_{X}\right)=$ $1-g$.
(3) Let X be a compact complex curve of genus g. Let $\omega_{X}=\Omega_{X}$ be the canonical line bundle. Show that $\chi\left(\omega_{X}\right)=g-1$ and deduce the Hopf index theorem

$$
\operatorname{deg} \omega_{X}=-e(X)=2 g-2
$$

[Hint: Use the Dolbeault theorem and Riemann-Roch]
(4) Let X be a compact complex manifold and $L \rightarrow X$ a holomorphic line bundle. Let s_{0}, \ldots, s_{m} be a basis of $H^{0}(X, \mathcal{L})$, and

$$
Z=\left(s_{0}=\cdots=s_{m}=0\right) \subset X
$$

the base locus of L. Let

$$
\varphi: X \backslash Z \rightarrow \mathbb{P}^{m}, \quad p \mapsto\left(s_{0}(p): s_{1}(p): \cdots: s_{m}(p)\right)
$$

be the associated holomorphic map of complex manifolds.
(a) For $p \in X$, let $\mathcal{I}_{p} \otimes \mathcal{L}$ be the sheaf of sections of L vanishing at p. Then we have an exact sequence of sheaves on X

$$
0 \rightarrow \mathcal{I}_{p} \otimes \mathcal{L} \rightarrow \mathcal{L} \rightarrow L_{p} \rightarrow 0
$$

where L_{p} denotes the skyscraper sheaf at p with stalk the fiber L_{p} of L over p. Show that L is basepoint free, that is, $Z=\emptyset$, iff $H^{0}(X, \mathcal{L}) \rightarrow L_{p}$ is surjective for all $p \in X$.
(b) Assume L is basepoint free. For $p, q \in X, p \neq q$, let $\mathcal{I}_{p, q} \otimes \mathcal{L}$ be the sheaf of sections of L vanishing at p and q. We have the exact sequence of sheaves

$$
0 \rightarrow \mathcal{I}_{p, q} \otimes \mathcal{L} \rightarrow \mathcal{L} \rightarrow L_{p} \oplus L_{q} \rightarrow 0
$$

Show that $\varphi: X \rightarrow \mathbb{P}^{m}$ is injective iff $H^{0}(X, L) \rightarrow L_{p} \oplus L_{q}$ is surjective for all $p, q \in X, p \neq q$.
(c) Assume L is basepoint free and φ is injective. For $p \in X$, let $\mathcal{I}_{p}^{2} \otimes \mathcal{L}$ be the sheaf of sections of \mathcal{L} vanishing to order 2 at p (that is, in a local trivialization of L, the section is given by a holomorphic function f such that $f(p)=0$ and $\left.f^{\prime}(p)=0\right)$. Then we have an exact sequence of sheaves on X

$$
0 \rightarrow \mathcal{I}_{p}^{2} \otimes \mathcal{L} \rightarrow \mathcal{I}_{p} \otimes \mathcal{L} \rightarrow T_{X, p}^{*} \otimes L_{p} \rightarrow 0
$$

where $T_{X, p}^{*}$ denotes the dual of the tangent space to X at p. Show that φ is a closed embedding (isomorphism onto a closed submanifold) iff $H^{0}\left(\mathcal{I}_{p} \otimes \mathcal{L}\right) \rightarrow T_{X, p}^{*} \otimes L_{p}$ is surjective for all $p \in X$. [Hint: Use the (holomorphic) inverse function theorem, see e.g. [GH78, p. 18.]
(d) Deduce that L is basepoint free and φ is a closed embedding if $H^{1}\left(\mathcal{I}_{p} \otimes \mathcal{L}\right)=H^{1}\left(\mathcal{I}_{p}^{2} \otimes \mathcal{L}\right)=0$ for all $p \in X$ and $H^{1}\left(\mathcal{I}_{p, q} \otimes \mathcal{L}\right)=0$ for all $p, q \in X, p \neq q$.
(5) Let X be a compact complex curve of genus g, and L a holomorphic line bundle on X.
(a) Show that $H^{1}(X, L)=0$ for $\operatorname{deg} L>2 g-2$.
[Hint: Recall Serre duality: For X a compact complex manifold of dimension $n, \omega_{X}=\Omega_{X}^{n}$ the canonical line bundle, and $E \rightarrow X$ a holomorphic vector bundle, we have a perfect pairing

$$
H^{k}(X, \mathcal{E}) \times H^{n-k}\left(X, \omega_{X} \otimes \mathcal{E}^{*}\right) \rightarrow \mathbb{C}
$$

Now use Q3 and Q1b.]
(b) Show that if deg $L>2 g$ then L defines a closed embedding $\varphi: X \rightarrow$ \mathbb{P}^{m} where $m=\operatorname{deg} L-g$.
[Hint: Use Q4d, part (a), and Riemann-Roch. Note that since $\operatorname{dim} X=1, \mathcal{I}_{p}=\mathcal{O}_{X}(-p)$ is a line bundle, etc.]
(6) Recall the exact sequence

$$
0 \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) / H^{1}(X, \mathbb{Z}) \rightarrow \operatorname{Pic} X \xrightarrow{c_{1}} H^{1,1} \cap H^{2}(X, \mathbb{Z}) \rightarrow 0
$$

given by the long exact sequence of cohomology associated to the exponential sequence

$$
0 \rightarrow \underline{\mathbb{Z}} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}^{\times} \rightarrow 0, \quad f \mapsto e^{2 \pi i f}
$$

Let V be a complex vector space of dimension $n,\left\{\lambda_{1}, \ldots, \lambda_{2 n}\right\}$ an \mathbb{R}-basis of $V, L=\mathbb{Z} \lambda_{1}+\cdots+\mathbb{Z} \lambda_{2 n} \subset V$ the lattice generated by $\lambda_{1}, \ldots, \lambda_{2 n}$, and $X=V / L$ the associated complex torus of dimension n. (So in particular X is isomorphic to $\left(S^{1}\right)^{2 n}$ as a C^{∞} manifold.)
Note that $\pi_{1}(X)=H_{1}(X, \mathbb{Z})=L$ and $H^{k}(X, \mathbb{Z})=\wedge^{k} L^{*}$ by the Kunneth formula. In terms of de Rham cohomology, let $x_{1}, \ldots, x_{2 n}$ be the real coordinates on V dual to $\lambda_{1}, \ldots, \lambda_{2 n}$, then $d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$, $i_{1}<\cdots<i_{k}$ is a \mathbb{Z}-basis of $H^{k}(X, \mathbb{Z}) \subset H^{k}(X, \mathbb{R})$. (That is, the de Rham cohomology is identified with the translation invariant forms.)
Let z_{1}, \ldots, z_{n} be complex coordinates on V, and consider the Hodge decomposition $H^{k}(X, \mathbb{C})=\bigoplus H^{p, q}$ (recall that complex tori are Kähler). Then $H^{p, q} \subset H^{k}(X, \mathbb{C})$ has \mathbb{C}-basis $d z_{i_{1}} \wedge \cdots d z_{i_{p}} \wedge d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{q}}$, $i_{1}<\cdots<i_{p}, j_{1}<\cdots<j_{q}$.
(a) Suppose that $n=2$. Show that there is a set of countably many hypersurfaces in $V^{\oplus 4} \simeq \mathbb{C}^{8}$ such that $H^{1,1} \cap H^{2}(X, \mathbb{Z})=0$ iff $\left(\lambda_{1}, \ldots, \lambda_{4}\right)$ lies in the complement of the union of these hypersurfaces.
[Hint: Identify $V=\mathbb{C}^{2}$ using the complex coordinates z_{1}, z_{2} and write $\lambda_{j}=\left(\lambda_{1 j}, \lambda_{2 j}\right)$. Then $d z_{i}=\sum \lambda_{i j} d x_{j}$. Let $\omega=\sum_{i<j} a_{i j} d x_{i} \wedge$ $d x_{j}, a_{i j} \in \mathbb{Z}$ be an integral 2-form on X. Then ω is of type (1,1) iff $d z_{1} \wedge d z_{2} \wedge \omega=0$ (why?). Writing this equation in terms of the $\lambda_{i j}$ gives a quadric hypersurface $q=0$.]
(b) Assume $H^{1,1} \cap H^{2}(X, \mathbb{Z})=0$. Show that $\mathrm{Cl}(X)=0$ and $\operatorname{Pic} X=$ $H^{1}\left(X, \mathcal{O}_{X}\right) / H^{1}(X, \mathbb{Z})$ (a complex torus of dimension n). In particular, there exists a holomorphic line bundle on X which does not admit a nonzero meromorphic section.
[Hint: A complex torus is Kähler. So if $Y \subset X$ is a prime divisor (irreducible analytic subset of codimension 1) then $0 \neq[Y] \in$ $H_{2 n-2}(X, \mathbb{Z})$.]
(7) Let X be a Kähler manifold of dimension n and $Z \subset X$ an irreducible analytic subset of dimension k. Let $[Z] \in H_{2 k}(X, \mathbb{Z})$ be the associated homology class (the fundamental class of Z). Then the Poincaré dual cohomology class $\operatorname{PD}([Z]) \in H^{2 n-2 k}(X, \mathbb{Z})$ has type $(n-k, n-k)$. To see this, recall that the Poincaré duality perfect pairing is given in de Rham cohomology by

$$
H^{2 k}(X, \mathbb{R}) \times H^{2 n-2 k}(X, \mathbb{R}) \rightarrow \mathbb{R}, \quad(\alpha, \beta) \mapsto \int_{X} \alpha \wedge \beta
$$

and (extending scalars from \mathbb{R} to \mathbb{C}) via the Hodge decomposition this decomposes as a direct sum of perfect pairings

$$
H^{p, q}(X) \times H^{n-p, n-q}(X) \rightarrow \mathbb{C}
$$

where $p+q=2 k$. Now, by definition

$$
\int_{X} \alpha \wedge \operatorname{PD}([Z])=\int_{Z} \alpha
$$

which vanishes for α of type $(p, q) \neq(k, k)$. It follows that $\mathrm{PD}([Z])$ has type ($n-k, n-k$).

Use this fact to describe the Hodge diamond of \mathbb{P}^{n}, and so give another proof that $H^{q}\left(\mathcal{O}_{\mathbb{P}^{n}}\right)=0$ for $q>0$.
(8) Let X and Y be complex manifolds and $X \times Y$ the Cartesian product with projections $p_{1}: X \times Y \rightarrow X$ and $p_{2}: X \times Y \rightarrow Y$. We have a group homomorphism

$$
\begin{equation*}
\operatorname{Pic} X \oplus \operatorname{Pic} Y \rightarrow \operatorname{Pic}(X \times Y), \quad(L, M) \rightarrow p_{1}^{*} L \otimes p_{2}^{*} M \tag{*}
\end{equation*}
$$

(a) Show that if $X=Y=\mathbb{P}^{1}$ then $(*)$ is an isomorphism.
[Hint: (1) Use the Kunneth formula to compute the cohomology of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. (Note: The Kunneth formula holds with \mathbb{Z} coefficients if the cohomology of X and Y is torsion-free.) (2) Determine the Hodge diamond of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and deduce that $c_{1}: \operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \rightarrow$ $H^{2}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{Z}\right)$ is an isomorphism (cf. Q7).]
(b) Show that if $X=Y=E$ is an elliptic curve (a complex curve of genus 1) then ($*$) is not an isomorphism.
[Hint: Let $p_{0} \in E$ be a choice of base point. Recall that E has the structure of an abelian group with identity p_{0} (because there is an isomorphism $E \simeq \mathbb{C} / \mathbb{Z} \lambda_{1}+\mathbb{Z} \lambda_{2}$ with $p_{0} \mapsto 0$.) Show that $F_{1}=\left\{p_{0}\right\} \times E, F_{2}=E \times\left\{p_{0}\right\}$, and the diagonal $\Delta \subset E \times$ E are linearly independent in $H_{2}(E \times E, \mathbb{Z})$ by e.g. computing intersection products. (Note that F_{i} is a fiber of p_{i} and Δ is a fiber of the map $E \times E \rightarrow E,(p, q) \mapsto p-q$ (using the group law on E). So $\left[F_{1}\right]^{2}=\left[F_{2}\right]^{2}=[\Delta]^{2}=0$ (why?).) Deduce that $(*)$ is not surjective.]
(9) Recall that we say a compact complex manifold X is Fano if ω_{X}^{*} is ample, where $\omega_{X}=\wedge^{n} \Omega_{X}$ is the canonical line bundle. Show that if X is Fano then c_{1} : Pic $X \rightarrow H^{2}(X, \mathbb{Z})$ is an isomorphism.
[Hint: Recall the Kodaira vanishing theorem: If X is a compact complex manifold and $L \rightarrow X$ is an ample line bundle then $H^{k}\left(\omega_{X} \otimes L\right)=0$ for $k>0$.]

References

[GH78] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, 1978.

