Math 797AS Homework 2

Paul Hacking

February 25, 2019

- (1) Recall the maximum principle from MATH 621: Suppose $\Omega \subset \mathbb{C}$ is a connected open set and $f \colon \Omega \to \mathbb{C}$ is a holomorphic function. If |f| has a maximum in Ω then f is constant. Use the maximum principle to prove the following statement: if X is a connected compact complex manifold and $f \colon X \to \mathbb{C}$ is a global holomorphic function then f is constant.
- (2) Recall that if X and Y are topological spaces, $f: X \to Y$ is a continuous map, and \mathcal{F} is a sheaf on X, then the *pushforward* $f_*\mathcal{F}$ is the sheaf on Y defined by $f_*\mathcal{F}(U) = \mathcal{F}(f^{-1}U)$.
 - (a) Let X be a topological space, $p \in X$ a closed point, and A an abelian group. Let \mathcal{F} be the sheaf on X defined by

$$\mathcal{F}(U) = \begin{cases} A & \text{if } p \in U \\ 0 & \text{otherwise.} \end{cases}$$

(\mathcal{F} is called the *skyscraper sheaf* supported at p with stalk A.) Show that $H^k(X, \mathcal{F}) = 0$ for k > 0.

(b) Let X be a topological space and $Y \subset X$ a closed subset (with the induced topology). Write $i: Y \to X$ for the inclusion. Let \mathcal{G} be a sheaf on Y. Show that $H^k(X, i_*\mathcal{G}) = H^k(Y, \mathcal{G})$ for all k.

[Remark: In part (b), for the special case that Y is a point the sheaf $\mathcal{F} = i_* \mathcal{G}$ on X is a skyscraper sheaf supported at Y as in part (a).]

(3) Let X be a compact complex curve (a Riemann surface). Let $D = \sum_{i=1}^{r} n_i p_i$ be a finite formal sum of points of X with multiplicities

 $n_i \in \mathbb{N}$. Define the sheaf $\mathcal{O}_X(D)$ on X as follows: Let $\Gamma(U, \mathcal{O}_X(D))$ be the set of meromorphic functions f on U such that f has a pole of order $\leq n_i$ at p_i for each $p_i \in U$ and is holomorphic elsewhere.

- (a) Show that $\mathcal{O}_X(D)$ is a locally free sheaf of rank 1. (So $\mathcal{O}_X(D)$ is the sheaf of holomorphic sections of a holomorphic line bundle $p \colon L \to X$.)
- (b) Let z_i be a local coordinate at $p_i \in X$. Show that there is an exact sequence of sheaves on X

$$0 \to \mathcal{O}_X \to \mathcal{O}_X(D) \to \bigoplus_{i=1}^r \mathbb{C}[z_i]/(z_i^{n_i}) \to 0$$

where the last term is a direct sum of skyscraper sheaves at the points p_i with stalks $\mathbb{C}[z_i]/(z_i^{n_i})$.

(4) Recall that a closed complex submanifold Y of dimension n-k of a complex manifold X of dimension n is a closed subset $Y \subset X$ such that there exist charts $\varphi_i \colon U_i \to \mathbb{C}^n_{z_1,\ldots,z_n}$ for X satisfying $Y \subset \bigcup U_i$ and

$$\varphi_i(Y \cap U_i) = \varphi_i(U_i) \cap \{(z_1, \dots, z_n) \mid z_1 = \dots = z_k = 0\}$$

for each i. (Then the restrictions of the charts φ_i give charts for Y as a complex manifold of dimension n-k.)

(a) Let Y be a closed complex submanifold of a complex manifold X. The *ideal sheaf* of $Y \subset X$ is the sheaf of holomorphic functions on X which vanish along Y, that is,

$$\mathcal{I}_Y(U) = \{ f \in \mathcal{O}_X(U) \mid f|_{Y \cap U} = 0 \}.$$

Let $i: Y \to X$ be the inclusion. Show that there is an exact sequence of sheaves on X

$$0 \to \mathcal{I}_Y \to \mathcal{O}_X \to i_* \mathcal{O}_Y \to 0.$$

(b) Show from first principles that $i_*\mathcal{O}_Y$ and \mathcal{I}_Y are coherent.

[Remark: More generally, one has the following theorem of Grauert: Suppose X and Y are complex manifolds, \mathcal{F} is a coherent sheaf on X, and $f: X \to Y$ is a holomorphic map. If f is proper (that is, the inverse image of a compact set is compact) then $f_*\mathcal{F}$ is a coherent sheaf on Y.]

(5) Let $X = \mathbb{C}$ and $Z = \{\frac{1}{n} \mid n \in \mathbb{N}\} \cup \{0\} \subset X$, a closed subset. Show that the ideal sheaf $\mathcal{I}_Z \subset \mathcal{O}_X$ defined by

$$\mathcal{I}_Z(U) = \{ f \in \mathcal{O}_X(U) \mid f|_{Z \cap U} = 0 \}$$

is not coherent.

(6) For X a complex manifold, \mathcal{F} a coherent sheaf on X, and $p \in X$ a point, define the *fiber* of \mathcal{F} at p to be the finite dimensional \mathbb{C} -vector space

$$\mathcal{F}\otimes\mathbb{C}(p):=\mathcal{F}_p\otimes_{\mathcal{O}_{X,p}}\mathcal{O}_{X,p}/\mathfrak{m}_{X,p}.$$

Here $\mathfrak{m}_{X,p} = \{ f \in \mathcal{O}_{X,p} \mid f(p) = 0 \}$ is the maximal ideal of the local ring $\mathcal{O}_{X,p}$; evaluation at p defines an isomorphism $\mathcal{O}_{X,p}/\mathfrak{m}_{X,p} \to \mathbb{C}$.

- (a) Let $p: E \to X$ be a holomorphic vector bundle over a complex manifold X, \mathcal{E} the sheaf of holomorphic sections of E, and $q \in X$ a point. Show that the fiber of \mathcal{E} at q is identified with the fiber $E_q := p^{-1}(q)$ of $p: E \to X$ at q.
- (b) Let \mathcal{F} be a coherent sheaf on a complex manifold X. Show that for $m \in \mathbb{Z}_{\geq 0}$ the subset

$$Z_m = \{ p \in X \mid \dim_{\mathbb{C}}(\mathcal{F} \otimes \mathbb{C}(p)) \ge m \}$$

is a closed analytic subset (that is, locally defined by the vanishing of a finite set of holomorphic functions). In particular, the function

$$X \to \mathbb{Z}, \quad p \mapsto \dim_{\mathbb{C}}(\mathcal{F} \otimes \mathbb{C}(p))$$
 (*)

is upper semi-continuous.

[Hints: Recall the definition of a coherent sheaf. Tensor product is right exact. The rank of a matrix A is < k iff the $k \times k$ minors vanish.]

(c) With notation as in part (b), suppose X is connected. Show that \mathcal{F} is locally free iff the function (*) is constant.

[Hint: The ring $\mathcal{O}_{X,p}$ is Noetherian. Use Nakayama's lemma.]

(7) Let \mathbb{P}^n be complex projective space of dimension n. For $d \in \mathbb{Z}$, let $p \colon L_d \to \mathbb{P}^n$ the holomorphic line bundle defined as follows: Writing

 X_0, \ldots, X_n for the homogeneous coordinates on \mathbb{P}^n , we have the open sets $U_i = (X_i \neq 0) \simeq \mathbb{C}^n$. Then L_d has local trivializations

$$\varphi_i \colon p^{-1}(U_i) \xrightarrow{\sim} U_i \times \mathbb{C}$$

with transition functions $g_{ij}: U_i \cap U_j \to \mathbb{C}^{\times}$ given by $g_{ij} = (X_i/X_j)^d$. Here recall that that transition function g_{ij} is defined by

$$\varphi_j \circ \varphi_i^{-1} \colon U_i \cap U_j \times \mathbb{C} \xrightarrow{\sim} U_i \cap U_j \times \mathbb{C}, \quad (p, v) \mapsto (p, g_{ij}(p) \cdot v).$$

Let $\mathcal{O}_{\mathbb{P}^n}(d)$ denote the sheaf of holomorphic sections of $L_d \to \mathbb{P}^n$. Using the open covering $\mathbb{P}^n = \bigcup U_i$ or otherwise, show that the global sections $\Gamma(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d))$ can be identified with the complex vector space of homogeneous polynomials of degree d in X_0, \ldots, X_n .

[Remark: The line bundles L_d can be described intrinsically as follows: Let $L \subset \mathbb{P}^n \times \mathbb{C}^{n+1}$ be the tautological line bundle over \mathbb{P}^n whose fiber over a point $[v] \in \mathbb{P}^n = \mathbb{C}^{n+1} \setminus \{0\}/\mathbb{C}^\times$ is the associated line $l = \mathbb{C} \cdot v \subset \mathbb{C}^{n+1}$. Then $L_d = (L^*)^{\otimes d}$ for d > 0, and $L_d = L^{\otimes (-d)}$ for d < 0 (and L_0 is trivial).]

(8) Let \mathbb{P}^n be complex projective *n*-space with homogeneous coordinates X_0, \ldots, X_n . Let F be a homogeneous polynomial of degree d in X_0, \ldots, X_n and

$$X = \{ p \in \mathbb{P}^n \mid F(p) = 0 \} \subset \mathbb{P}^n$$

the hypersurface defined by F. Assume that dF is nowhere zero on $\mathbb{C}^{n+1} \setminus \{0\}$, so that X is a complex manifold of dimension n-1 by the implicit function theorem.

- (a) Show that the ideal sheaf $\mathcal{I}_X \subset \mathcal{O}_{\mathbb{P}^n}$ is isomorphic to $\mathcal{O}_{\mathbb{P}^n}(-d)$.
- (b) One has the following result on the cohomology of the sheaves $\mathcal{O}_{\mathbb{P}^n}(m)$:
 - $H^0(\mathcal{O}_{\mathbb{P}^n}(m))$ is identified with the space of homogeneous polynomials of degree m in X_0, \ldots, X_n ,
 - $H^k(\mathcal{O}_{\mathbb{P}^n}(m)) = 0$ for 0 < k < n, and
 - $H^n(\mathcal{O}_{\mathbb{P}^n}(m)) \simeq H^0(\mathcal{O}_{\mathbb{P}^n}(-m-n-1))^*$.

This can be proved using Cech cohomology for the Stein open covering of \mathbb{P}^n given by the $U_i = (X_i \neq 0) \simeq \mathbb{C}^n$. See e.g. [H77],

Chapter III, Theorem 5.1, p. 225 for a proof in the algebraic category (which implies the result in the analytic category by [S55]). Now, with notation as above, deduce that $H^k(\mathcal{O}_X) = 0$ for 0 < k < n - 1.

(9) Let F and G be irreducible homogeneous polynomials in X_0, X_1, X_2 of degrees d and e. Let $X = (F = 0) \subset \mathbb{P}^2$ and $Y = (G = 0) \subset \mathbb{P}^2$ be the associated irreducible complex curves (possibly singular) in the complex projective plane. Assume $X \neq Y$, then $X \cap Y$ is finite. For $p \in X \cap Y$, define the intersection multiplicity of X and Y at p by

$$(X \cdot Y)_p = \dim_{\mathbb{C}} \mathcal{O}_{\mathbb{P}^2, p} / (f_p, g_p)$$

where $f_p, g_p \in \mathcal{O}_{\mathbb{P}^2, p}$ are local equations for X and Y.

(a) Show that there is an exact sequence of sheaves on \mathbb{P}^2

$$0 \to \mathcal{O}_{\mathbb{P}^2}(-d-e) \to \mathcal{O}_{\mathbb{P}^2}(-d) \oplus \mathcal{O}_{\mathbb{P}^2}(-e) \to \mathcal{O}_{\mathbb{P}^2} \to \bigoplus_{p \in X \cap Y} \mathcal{O}_{\mathbb{P}^2,p}/(f_p,g_p) \to 0$$

where the last term is a direct sum of skyscraper sheaves supported at the intersection points of X and Y.

[Hints: (1) If Z is a complex manifold, $p \in Z$ is a point, and z_1, \ldots, z_n are local coordinates at p, then $\mathcal{O}_{Z,p}$ is the ring $\mathbb{C}\{z_1, \ldots, z_n\}$ of convergent complex power series in z_1, \ldots, z_n . This ring is a UFD, see e.g. Griffiths and Harris, p. 10.

- (2) We have $\mathcal{I}_X \simeq \mathcal{O}_{\mathbb{P}^2}(-d)$, cf. Q7(a). Here, if $p \in X$ is a singular point, one needs to use e.g. Griffiths and Harris, p. 11–12 to show that if $p \in (X_i \neq 0)$ then $f_p := F/X_i^d$ generates $\mathcal{I}_{X,p}$.)
- (b) Deduce Bézout's theorem:

$$X \cdot Y := \sum_{p \in X \cap Y} (X \cdot Y)_p = d \cdot e.$$

[Hints: (1) In any abelian category, a long exact sequence

$$0 \to A_m \xrightarrow{\theta_m} \cdots \xrightarrow{\theta_2} A_1 \xrightarrow{\theta_1} A_0 \to 0$$

can be divided into short exact sequences

$$0 \to \ker \theta_i \to A_i \to \operatorname{im} \theta_i \to 0$$

(note im $\theta_i = \ker \theta_{i-1}$ by assumption). In particular, it follows that, for a long exact sequence

$$0 \to \mathcal{F}_m \xrightarrow{\theta_m} \cdots \xrightarrow{\theta_2} \mathcal{F}_1 \xrightarrow{\theta_1} \mathcal{F}_0 \to 0$$

in the category of coherent sheaves on a compact complex manifold X, we have $\sum_{k=0}^{m} (-1)^k \chi(X, \mathcal{F}_k) = 0$ (why?).

(2) $\chi(\mathcal{O}_{\mathbb{P}^2}(m))$ can be computed using the statement in Q7(b).]

References

- [H77] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52. Springer-Verlag, 1977.
- [S55] J-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble 6 (1955–1956), 1–42.