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(1) Recall the maximum principle from MATH 621: Suppose Ω ⊂ C is a
connected open set and f : Ω→ C is a holomorphic function. If |f | has
a maximum in Ω then f is constant. Use the maximum principle to
prove the following statement: if X is a connected compact complex
manifold and f : X → C is a global holomorphic function then f is
constant.

(2) Recall that ifX and Y are topological spaces, f : X → Y is a continuous
map, and F is a sheaf on X, then the pushforward f∗F is the sheaf on
Y defined by f∗F(U) = F(f−1U).

(a) Let X be a topological space, p ∈ X a closed point, and A an
abelian group. Let F be the sheaf on X defined by

F(U) =

{
A if p ∈ U
0 otherwise.

(F is called the skyscraper sheaf supported at p with stalk A.)
Show that Hk(X,F) = 0 for k > 0.

(b) Let X be a topological space and Y ⊂ X a closed subset (with
the induced topology). Write i : Y → X for the inclusion. Let G
be a sheaf on Y . Show that Hk(X, i∗G) = Hk(Y,G) for all k.

[Remark: In part (b), for the special case that Y is a point the sheaf
F = i∗G on X is a skyscraper sheaf supported at Y as in part (a).]

(3) Let X be a compact complex curve (a Riemann surface). Let D =∑r
i=1 nipi be a finite formal sum of points of X with multiplicities
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ni ∈ N. Define the sheaf OX(D) on X as follows: Let Γ(U,OX(D))
be the set of meromorphic functions f on U such that f has a pole of
order ≤ ni at pi for each pi ∈ U and is holomorphic elsewhere.

(a) Show that OX(D) is a locally free sheaf of rank 1. (So OX(D)
is the sheaf of holomorphic sections of a holomorphic line bundle
p : L→ X.)

(b) Let zi be a local coordinate at pi ∈ X. Show that there is an exact
sequence of sheaves on X

0→ OX → OX(D)→
r⊕
i=1

C[zi]/(z
ni
i )→ 0

where the last term is a direct sum of skyscraper sheaves at the
points pi with stalks C[zi]/(z

ni
i ).

(4) Recall that a closed complex submanifold Y of dimension n − k of a
complex manifold X of dimension n is a closed subset Y ⊂ X such that
there exist charts ϕi : Ui → Cn

z1,...,zn
for X satisfying Y ⊂

⋃
Ui and

ϕi(Y ∩ Ui) = ϕi(Ui) ∩ {(z1, . . . , zn) | z1 = · · · = zk = 0}

for each i. (Then the restrictions of the charts ϕi give charts for Y as
a complex manifold of dimension n− k.)

(a) Let Y be a closed complex submanifold of a complex manifold X.
The ideal sheaf of Y ⊂ X is the sheaf of holomorphic functions
on X which vanish along Y , that is,

IY (U) = {f ∈ OX(U) | f |Y ∩U = 0}.

Let i : Y → X be the inclusion. Show that there is an exact
sequence of sheaves on X

0→ IY → OX → i∗OY → 0.

(b) Show from first principles that i∗OY and IY are coherent.

[Remark: More generally, one has the following theorem of Grauert:
Suppose X and Y are complex manifolds, F is a coherent sheaf on
X, and f : X → Y is a holomorphic map. If f is proper (that is, the
inverse image of a compact set is compact) then f∗F is a coherent sheaf
on Y .]
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(5) Let X = C and Z = { 1
n
| n ∈ N} ∪ {0} ⊂ X, a closed subset. Show

that the ideal sheaf IZ ⊂ OX defined by

IZ(U) = {f ∈ OX(U) | f |Z∩U = 0}

is not coherent.

(6) For X a complex manifold, F a coherent sheaf on X, and p ∈ X a
point, define the fiber of F at p to be the finite dimensional C-vector
space

F ⊗ C(p) := Fp ⊗OX,p
OX,p/mX,p.

Here mX,p = {f ∈ OX,p | f(p) = 0} is the maximal ideal of the local
ring OX,p; evaluation at p defines an isomorphism OX,p/mX,p → C.

(a) Let p : E → X be a holomorphic vector bundle over a complex
manifold X, E the sheaf of holomorphic sections of E, and q ∈ X
a point. Show that the fiber of E at q is identified with the fiber
Eq := p−1(q) of p : E → X at q.

(b) Let F be a coherent sheaf on a complex manifold X. Show that
for m ∈ Z≥0 the subset

Zm = {p ∈ X | dimC(F ⊗ C(p)) ≥ m}

is a closed analytic subset (that is, locally defined by the vanishing
of a finite set of holomorphic functions). In particular, the function

X → Z, p 7→ dimC(F ⊗ C(p)) (∗)

is upper semi-continuous.

[Hints: Recall the definition of a coherent sheaf. Tensor product
is right exact. The rank of a matrix A is < k iff the k × k minors
vanish.]

(c) With notation as in part (b), suppose X is connected. Show that
F is locally free iff the function (∗) is constant.

[Hint: The ring OX,p is Noetherian. Use Nakayama’s lemma.]

(7) Let Pn be complex projective space of dimension n. For d ∈ Z, let
p : Ld → Pn the holomorphic line bundle defined as follows: Writing
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X0, . . . , Xn for the homogeneous coordinates on Pn, we have the open
sets Ui = (Xi 6= 0) ' Cn. Then Ld has local trivializations

ϕi : p
−1(Ui)

∼−→ Ui × C

with transition functions gij : Ui ∩ Uj → C× given by gij = (Xi/Xj)
d.

Here recall that that transition function gij is defined by

ϕj ◦ ϕ−1i : Ui ∩ Uj × C ∼−→ Ui ∩ Uj × C, (p, v) 7→ (p, gij(p) · v).

Let OPn(d) denote the sheaf of holomorphic sections of Ld → Pn. Us-
ing the open covering Pn =

⋃
Ui or otherwise, show that the global

sections Γ(Pn,OPn(d)) can be identified with the complex vector space
of homogeneous polynomials of degree d in X0, . . . , Xn.

[Remark: The line bundles Ld can be described intrinsically as follows:
Let L ⊂ Pn × Cn+1 be the tautological line bundle over Pn whose fiber
over a point [v] ∈ Pn = Cn+1 \{0}/C× is the associated line l = C · v ⊂
Cn+1. Then Ld = (L∗)⊗d for d > 0, and Ld = L⊗(−d) for d < 0 (and L0

is trivial).]

(8) Let Pn be complex projective n-space with homogeneous coordinates
X0, . . . , Xn. Let F be a homogeneous polynomial of degree d inX0, . . . , Xn

and
X = {p ∈ Pn | F (p) = 0} ⊂ Pn

the hypersurface defined by F . Assume that dF is nowhere zero on
Cn+1 \ {0}, so that X is a complex manifold of dimension n− 1 by the
implicit function theorem.

(a) Show that the ideal sheaf IX ⊂ OPn is isomorphic to OPn(−d).

(b) One has the following result on the cohomology of the sheaves
OPn(m):

• H0(OPn(m)) is identified with the space of homogeneous poly-
nomials of degree m in X0, . . . , Xn,

• Hk(OPn(m)) = 0 for 0 < k < n, and

• Hn(OPn(m)) ' H0(OPn(−m− n− 1))∗.

This can be proved using Cech cohomology for the Stein open
covering of Pn given by the Ui = (Xi 6= 0) ' Cn. See e.g. [H77],
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Chapter III, Theorem 5.1, p. 225 for a proof in the algebraic cat-
egory (which implies the result in the analytic category by [S55]).

Now, with notation as above, deduce that Hk(OX) = 0 for 0 <
k < n− 1.

(9) Let F and G be irreducible homogeneous polynomials in X0, X1, X2 of
degrees d and e. Let X = (F = 0) ⊂ P2 and Y = (G = 0) ⊂ P2

be the associated irreducible complex curves (possibly singular) in the
complex projective plane. Assume X 6= Y , then X ∩ Y is finite. For
p ∈ X ∩ Y , define the intersection multiplicity of X and Y at p by

(X · Y )p = dimCOP2,p/(fp, gp)

where fp, gp ∈ OP2,p are local equations for X and Y .

(a) Show that there is an exact sequence of sheaves on P2

0→ OP2(−d−e)→ OP2(−d)⊕OP2(−e)→ OP2 →
⊕

p∈X∩Y

OP2,p/(fp, gp)→ 0

where the last term is a direct sum of skyscraper sheaves supported
at the intersection points of X and Y .

[Hints: (1) If Z is a complex manifold, p ∈ Z is a point, and
z1, . . . , zn are local coordinates at p, thenOZ,p is the ring C{z1, . . . , zn}
of convergent complex power series in z1, . . . , zn. This ring is a
UFD, see e.g. Griffiths and Harris, p. 10.

(2) We have IX ' OP2(−d), cf. Q7(a). Here, if p ∈ X is a singular
point, one needs to use e.g. Griffiths and Harris, p. 11–12 to show
that if p ∈ (Xi 6= 0) then fp := F/Xd

i generates IX,p.)]
(b) Deduce Bézout’s theorem:

X · Y :=
∑

p∈X∩Y

(X · Y )p = d · e.

[Hints: (1) In any abelian category, a long exact sequence

0→ Am
θm−→ · · · θ2−→ A1

θ1−→ A0 → 0

can be divided into short exact sequences

0→ ker θi → Ai → im θi → 0
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(note im θi = ker θi−1 by assumption). In particular, it follows
that, for a long exact sequence

0→ Fm
θm−→ · · · θ2−→ F1

θ1−→ F0 → 0

in the category of coherent sheaves on a compact complex manifold
X, we have

∑m
k=0(−1)kχ(X,Fk) = 0 (why?).

(2) χ(OP2(m)) can be computed using the statement in Q7(b).]
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