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(1) Let X be a complex manifold. We can forget the complex structure
and consider the underlying smooth manifold. Show that the com-
plex charts of X determine an orientation of the underlying smooth
manifold.

[Hint: Consider the transition map between two charts with coordinates
zj = xj + iyj and wj = uj + ivj, j = 1, . . . , n. Let B ∈ GL2n(R) be
the matrix of the real derivative of the transition map at a point with
respect to the real bases ∂

∂x1
, ∂
∂y1
, . . . , ∂

∂xn
, ∂
∂yn

and ∂
∂u1
, ∂
∂v1
, . . . , ∂

∂un
, ∂
∂vn

of the tangent spaces. Now change bases (after extending scalars from R
to C) to ∂

∂z1
, . . . , ∂

∂zn
, ∂
∂z̄1
, . . . , ∂

∂z̄n
and ∂

∂w1
, . . . , ∂

∂wn
, ∂
∂w̄1

, . . . , ∂
∂w̄n

. Show
that the matrix with respect to these bases is the block diagonal matrix(
A 0
0 Ā

)
where A = (

∂wj

∂zk
) is the matrix of the complex derivative of

the transition map with respect to the complex bases ∂
∂z1
, . . . ∂

∂zn
and

∂
∂w1

, . . . , ∂
∂wn

of the tangent spaces. Deduce that detB = | detA|2 > 0.]

(2) Let Pn = (Cn+1 \ {0})/C× be the complex projective n-space, where
C× acts by scalar multiplication. Consider the sphere

S2n+1 = {(z0, . . . , zn) |
∑
|zj|2 = 1} ⊂ Cn+1

and the induced action of U(1) = {z | |z| = 1} ⊂ C× on S2n+1. Show
that Pn = S2n+1/U(1) and deduce that Pn is compact.

(3) A complex curve (or Riemann surface) of genus 1 is isomorphic to a
complex torus C/Λ, where Λ = Zλ1 + Zλ2 and λ1, λ2 ∈ C is a basis
of C regarded as an R-vector space (this is an instance of the Rie-
mann uniformization theorem). Show that a morphism (holomorphic
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map) of complex manifolds C/Λ→ C/Λ′ is induced by an affine trans-
formation z 7→ αz + β, for some α, β ∈ C. Deduce that the moduli
space parametrizing isomorphism types of complex curves of genus 1 is
identified with the quotient of the upper half plane

H = {τ ∈ C | Im(τ) > 0}

by the action of SL(2,Z) given by(
a b
c d

)
· τ =

aτ + b

cτ + d
.

Remark: In general, for g ≥ 2, the moduli space Mg parametrizing
isomorphism types of complex curves of genus g is a complex orbifold
of dimension 3g − 3.

(4) Let X1 and X2 be compact, oriented, simply connected, smooth 4-
manifolds. Show that the connected sum X = X1#X2 is a compact,
oriented, simply connected smooth 4 manifold, such that H2(X,Z) =
H2(X1,Z)⊕H2(X2,Z) and the intersection product QX = QX1 ⊕QX2 .

[Hint: Use the Van Kampen theorem and the Mayer–Vietoris sequence.
See e.g. Hatcher.]

(5) Let M be an compact oriented manifold such that d = dimRM is odd.
Prove that the Euler number

e(M) =
d∑
i=0

(−1)i dimRHi(M,R)

equals zero.

(6) Recall in class we described a rational elliptic surface obtained by blow-
ing up the 9 intersection points of two general cubic curves C0 = (F =
0) and C∞ = (G = 0) in P2. For F and G general, every element of
the pencil of cubic curves C(λ : µ) = (λF + µG = 0) ⊂ P2, (λ : µ) ∈ P1

is either smooth or has a unique singularity which is a node, that is,
in local coordinates at the singular point p ∈ C = C(λ : µ), we have an
isomorphism of germs

(p ∈ C ⊂ P2) ' (0 ∈ (z1z2 = 0) ⊂ C2
z1,z2

)
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(this is a special case of a lemma of Lefschetz: {Ct}t∈P1 is a so-called
Lefschetz pencil). In the singular case C is topologically a pinched torus
obtained from T 2 = S1 × S1 by collapsing a curve S1 × {q} to a point.

Now consider the associated elliptic fibration f : X → P1, with fibers
f−1(t) = Ct. Show that there are exactly 12 singular fibers by comput-
ing the Euler number of X in two ways: first using the description as
a blowup of P2, and second in terms of the elliptic fibration.

[Hints:(0) By Mayer–Vietoris e(X ∪ Y ) = e(X) + e(Y ) − e(X ∩ Y ).
(1) If π : E → B is a locally trivial fiber bundle with fiber F then
e(E) = e(B)e(F ). (2) If C = f−1(p) ⊂ X is a singular fiber and
p ∈ U ⊂ P1 is a small open disc centered at p with closure U then
N = f−1(U) is a manifold with boundary such that C = f−1(p) ⊂ N
is a deformation retract.]

(7) Recall the construction of the logarithmic transform for an elliptic fi-
bration (cf. Griffiths and Harris, p. 565–567): Let f : X → C be a
holomorphic map from a complex surface X to a complex curve C such
that a general fiber F = f−1(p) of f is a (smooth) complex curve of
genus 1. Let p ∈ U ⊂ C be a small open disc centered at p, and identify
f−1(U)→ U with

g : Y := Cz × Dt/Z2 → Dt

where Dt = {t | |t| < 1} and the group action is given by

(a, b) : (z, t) 7→ (z + a+ bτ(t), t)

where τ : Dt → Cz is holomorphic and Im τ(t) 6= 0 for all t. Fix m ∈ N
and k ∈ Z/mZ such that (k,m) = 1.

Let Z = Y ×Dt Ds → Ds be the pullback of the family Y → Dt via
Ds → Dt, s 7→ sm. So

Z = Cw × Ds/Z2 → Ds

where the action is given by

(a, b) : (w, s) 7→ (w + a+ bτ(sm), s).

Let g′ : Y ′ → Dt be the quotient of Z → Ds by the Z/mZ action given
by

Z/mZ 3 1: (w, s) 7→ (w + k/m, e2πi/m · s).
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(a) Show that there is an isomorphism (Y ′)× → Y × of the restriction
of the families to the punctured disc D×t = Dt \ {0} given by

(w, s) 7→ (w − k

2πi
log s, sm).

So we can glue Y ′ → D to X \ F → C \ {p} along Y × → D× to
obtain a new elliptic fibration f ′ : X ′ → C.

(b) Show that the fiber F ′ = g′−1(0) of g′ : Y ′ → Dt over 0 ∈ Dt is a
smooth fiber of multiplicity m, that is, near a point of F ′ there
are local coordinates (z1, z2) on Y ′ such that the map g′ is given
by (z1, z2) 7→ zm2 . So the logarithmic transform replaces a smooth
fiber of multiplicity 1 with a smooth fiber of multiplicity m.

(8) Recall the Hopf surface X = (C2 \{0})/Z, where the action is given by

(z1, z2) 7→ 1

2
(z1, z2).

Show that there is an elliptic fibration X → P1 such that all the fibers
are isomorphic.

[Hint: There is an isomorphism C/Z→ C× defined by z 7→ exp(2πiz).]

(9) (Optional) Study the construction of symplectic and Kähler quotients
in [HKLR87], §3A,B,C, and work it out explicitly in the case of complex
projective space Pn = Cn+1 \ {0}/C× = S2n+1/S1 to obtain the Fubini
Study metric, following our discussion in class.

(10) (Optional) Study the construction of a complex structure on S3 × S3

in [CE53]. See also Wikipedia. This gives a simply connected compact
complex manifold X which is not Kähler (because H2(X,R) = 0).
(Remark: Complex structures on S3 × S3 arise in the conjecture of
Miles Reid on Calabi–Yau 3-folds, see [R87].)

(11) (Optional) Study the construction of a non-Kähler compact complex
3-fold X by Hironaka, see e.g [H77], p. 444, Example 3.4.2 (cf. Example
3.4.1). These examples have the property that the field of meromorphic
functions on X has transcendence degree over C equal to the complex
dimension of X (as for a projective variety). They are not Kähler
because there is a complex curve C ⊂ X such that the homology class
of C in H2(X,Z) is equal to zero.
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