Math 797AS Homework 1

Paul Hacking

February 7, 2019
(1) Let X be a complex manifold. We can forget the complex structure and consider the underlying smooth manifold. Show that the complex charts of X determine an orientation of the underlying smooth manifold.
[Hint: Consider the transition map between two charts with coordinates $z_{j}=x_{j}+i y_{j}$ and $w_{j}=u_{j}+i v_{j}, j=1, \ldots, n$. Let $B \in \mathrm{GL}_{2 n}(\mathbb{R})$ be the matrix of the real derivative of the transition map at a point with respect to the real bases $\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial y_{n}}$ and $\frac{\partial}{\partial u_{1}}, \frac{\partial}{\partial v_{1}}, \ldots, \frac{\partial}{\partial u_{n}}, \frac{\partial}{\partial v_{n}}$ of the tangent spaces. Now change bases (after extending scalars from \mathbb{R} to \mathbb{C}) to $\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{n}}, \frac{\partial}{\partial \bar{z}_{1}}, \ldots, \frac{\partial}{\partial \bar{z}_{n}}$ and $\frac{\partial}{\partial w_{1}}, \ldots, \frac{\partial}{\partial w_{n}}, \frac{\partial}{\partial \bar{w}_{1}}, \ldots, \frac{\partial}{\partial \bar{w}_{n}}$. Show that the matrix with respect to these bases is the block diagonal matrix $\left(\begin{array}{cc}A & 0 \\ 0 & \bar{A}\end{array}\right)$ where $A=\left(\frac{\partial w_{j}}{\partial z_{k}}\right)$ is the matrix of the complex derivative of the transition map with respect to the complex bases $\frac{\partial}{\partial z_{1}}, \ldots \frac{\partial}{\partial z_{n}}$ and $\frac{\partial}{\partial w_{1}}, \ldots, \frac{\partial}{\partial w_{n}}$ of the tangent spaces. Deduce that $\operatorname{det} B=|\operatorname{det} A|^{2}>0$.]
(2) Let $\mathbb{P}^{n}=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{\times}$be the complex projective n-space, where \mathbb{C}^{\times}acts by scalar multiplication. Consider the sphere

$$
S^{2 n+1}=\left\{\left.\left(z_{0}, \ldots, z_{n}\right)\left|\sum\right| z_{j}\right|^{2}=1\right\} \subset \mathbb{C}^{n+1}
$$

and the induced action of $\mathrm{U}(1)=\{z| | z \mid=1\} \subset \mathbb{C}^{\times}$on $S^{2 n+1}$. Show that $\mathbb{P}^{n}=S^{2 n+1} / \mathrm{U}(1)$ and deduce that \mathbb{P}^{n} is compact.
(3) A complex curve (or Riemann surface) of genus 1 is isomorphic to a complex torus \mathbb{C} / Λ, where $\Lambda=\mathbb{Z} \lambda_{1}+\mathbb{Z} \lambda_{2}$ and $\lambda_{1}, \lambda_{2} \in \mathbb{C}$ is a basis of \mathbb{C} regarded as an \mathbb{R}-vector space (this is an instance of the Riemann uniformization theorem). Show that a morphism (holomorphic
map) of complex manifolds $\mathbb{C} / \Lambda \rightarrow \mathbb{C} / \Lambda^{\prime}$ is induced by an affine transformation $z \mapsto \alpha z+\beta$, for some $\alpha, \beta \in \mathbb{C}$. Deduce that the moduli space parametrizing isomorphism types of complex curves of genus 1 is identified with the quotient of the upper half plane

$$
\mathcal{H}=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau)>0\}
$$

by the action of $\mathrm{SL}(2, \mathbb{Z})$ given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \tau=\frac{a \tau+b}{c \tau+d} .
$$

Remark: In general, for $g \geq 2$, the moduli space M_{g} parametrizing isomorphism types of complex curves of genus g is a complex orbifold of dimension $3 g-3$.
(4) Let X_{1} and X_{2} be compact, oriented, simply connected, smooth 4manifolds. Show that the connected sum $X=X_{1} \# X_{2}$ is a compact, oriented, simply connected smooth 4 manifold, such that $H_{2}(X, \mathbb{Z})=$ $H_{2}\left(X_{1}, \mathbb{Z}\right) \oplus H_{2}\left(X_{2}, \mathbb{Z}\right)$ and the intersection product $Q_{X}=Q_{X_{1}} \oplus Q_{X_{2}}$.
[Hint: Use the Van Kampen theorem and the Mayer-Vietoris sequence. See e.g. Hatcher.]
(5) Let M be an compact oriented manifold such that $d=\operatorname{dim}_{\mathbb{R}} M$ is odd. Prove that the Euler number

$$
e(M)=\sum_{i=0}^{d}(-1)^{i} \operatorname{dim}_{\mathbb{R}} H_{i}(M, \mathbb{R})
$$

equals zero.
(6) Recall in class we described a rational elliptic surface obtained by blowing up the 9 intersection points of two general cubic curves $C_{0}=(F=$ $0)$ and $C_{\infty}=(G=0)$ in \mathbb{P}^{2}. For F and G general, every element of the pencil of cubic curves $C_{(\lambda: \mu)}=(\lambda F+\mu G=0) \subset \mathbb{P}^{2},(\lambda: \mu) \in \mathbb{P}^{1}$ is either smooth or has a unique singularity which is a node, that is, in local coordinates at the singular point $p \in C=C_{(\lambda: \mu)}$, we have an isomorphism of germs

$$
\left(p \in C \subset \mathbb{P}^{2}\right) \simeq\left(0 \in\left(z_{1} z_{2}=0\right) \subset \mathbb{C}_{z_{1}, z_{2}}^{2}\right)
$$

(this is a special case of a lemma of Lefschetz: $\left\{C_{t}\right\}_{t \in \mathbb{P}^{1}}$ is a so-called Lefschetz pencil). In the singular case C is topologically a pinched torus obtained from $T^{2}=S^{1} \times S^{1}$ by collapsing a curve $S^{1} \times\{q\}$ to a point.
Now consider the associated elliptic fibration $f: X \rightarrow \mathbb{P}^{1}$, with fibers $f^{-1}(t)=C_{t}$. Show that there are exactly 12 singular fibers by computing the Euler number of X in two ways: first using the description as a blowup of \mathbb{P}^{2}, and second in terms of the elliptic fibration.
[Hints:(0) By Mayer-Vietoris $e(X \cup Y)=e(X)+e(Y)-e(X \cap Y)$. (1) If $\pi: E \rightarrow B$ is a locally trivial fiber bundle with fiber F then $e(E)=e(B) e(F)$. (2) If $C=f^{-1}(p) \subset X$ is a singular fiber and $p \in U \subset \mathbb{P}^{1}$ is a small open disc centered at p with closure \bar{U} then $N=f^{-1}(\bar{U})$ is a manifold with boundary such that $C=f^{-1}(p) \subset N$ is a deformation retract.]
(7) Recall the construction of the logarithmic transform for an elliptic fibration (cf. Griffiths and Harris, p. 565-567): Let $f: X \rightarrow C$ be a holomorphic map from a complex surface X to a complex curve C such that a general fiber $F=f^{-1}(p)$ of f is a (smooth) complex curve of genus 1. Let $p \in U \subset C$ be a small open disc centered at p, and identify $f^{-1}(U) \rightarrow U$ with

$$
g: Y:=\mathbb{C}_{z} \times \mathbb{D}_{t} / \mathbb{Z}^{2} \rightarrow \mathbb{D}_{t}
$$

where $\mathbb{D}_{t}=\{t| | t \mid<1\}$ and the group action is given by

$$
(a, b):(z, t) \mapsto(z+a+b \tau(t), t)
$$

where $\tau: \mathbb{D}_{t} \rightarrow \mathbb{C}_{z}$ is holomorphic and $\operatorname{Im} \tau(t) \neq 0$ for all t. Fix $m \in \mathbb{N}$ and $k \in \mathbb{Z} / m \mathbb{Z}$ such that $(k, m)=1$.
Let $Z=Y \times_{\mathbb{D}_{t}} \mathbb{D}_{s} \rightarrow \mathbb{D}_{s}$ be the pullback of the family $Y \rightarrow \mathbb{D}_{t}$ via $\mathbb{D}_{s} \rightarrow \mathbb{D}_{t}, s \mapsto s^{m}$. So

$$
Z=\mathbb{C}_{w} \times \mathbb{D}_{s} / \mathbb{Z}^{2} \rightarrow \mathbb{D}_{s}
$$

where the action is given by

$$
(a, b):(w, s) \mapsto\left(w+a+b \tau\left(s^{m}\right), s\right) .
$$

Let $g^{\prime}: Y^{\prime} \rightarrow \mathbb{D}_{t}$ be the quotient of $Z \rightarrow \mathbb{D}_{s}$ by the $\mathbb{Z} / m \mathbb{Z}$ action given by

$$
\mathbb{Z} / m \mathbb{Z} \ni 1:(w, s) \mapsto\left(w+k / m, e^{2 \pi i / m} \cdot s\right) .
$$

(a) Show that there is an isomorphism $\left(Y^{\prime}\right)^{\times} \rightarrow Y^{\times}$of the restriction of the families to the punctured disc $\mathbb{D}_{t}^{\times}=\mathbb{D}_{t} \backslash\{0\}$ given by

$$
(w, s) \mapsto\left(w-\frac{k}{2 \pi i} \log s, s^{m}\right)
$$

So we can glue $Y^{\prime} \rightarrow \mathbb{D}$ to $X \backslash F \rightarrow C \backslash\{p\}$ along $Y^{\times} \rightarrow \mathbb{D}^{\times}$to obtain a new elliptic fibration $f^{\prime}: X^{\prime} \rightarrow C$.
(b) Show that the fiber $F^{\prime}=g^{\prime-1}(0)$ of $g^{\prime}: Y^{\prime} \rightarrow \mathbb{D}_{t}$ over $0 \in \mathbb{D}_{t}$ is a smooth fiber of multiplicity m, that is, near a point of F^{\prime} there are local coordinates $\left(z_{1}, z_{2}\right)$ on Y^{\prime} such that the map g^{\prime} is given by $\left(z_{1}, z_{2}\right) \mapsto z_{2}^{m}$. So the logarithmic transform replaces a smooth fiber of multiplicity 1 with a smooth fiber of multiplicity m.
(8) Recall the Hopf surface $X=\left(\mathbb{C}^{2} \backslash\{0\}\right) / \mathbb{Z}$, where the action is given by

$$
\left(z_{1}, z_{2}\right) \mapsto \frac{1}{2}\left(z_{1}, z_{2}\right) .
$$

Show that there is an elliptic fibration $X \rightarrow \mathbb{P}^{1}$ such that all the fibers are isomorphic.
[Hint: There is an isomorphism $\mathbb{C} / \mathbb{Z} \rightarrow \mathbb{C}^{\times}$defined by $z \mapsto \exp (2 \pi i z)$.]
(9) (Optional) Study the construction of symplectic and Kähler quotients in [HKLR87], $\S 3 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$, and work it out explicitly in the case of complex projective space $\mathbb{P}^{n}=\mathbb{C}^{n+1} \backslash\{0\} / \mathbb{C}^{\times}=S^{2 n+1} / S^{1}$ to obtain the Fubini Study metric, following our discussion in class.
(10) (Optional) Study the construction of a complex structure on $S^{3} \times S^{3}$ in CE53. See also Wikipedia. This gives a simply connected compact complex manifold X which is not Kähler (because $H^{2}(X, \mathbb{R})=0$). (Remark: Complex structures on $S^{3} \times S^{3}$ arise in the conjecture of Miles Reid on Calabi-Yau 3 -folds, see [R87.)
(11) (Optional) Study the construction of a non-Kähler compact complex 3 -fold X by Hironaka, see e.g [H77], p. 444, Example 3.4.2 (cf. Example 3.4.1). These examples have the property that the field of meromorphic functions on X has transcendence degree over \mathbb{C} equal to the complex dimension of X (as for a projective variety). They are not Kähler because there is a complex curve $C \subset X$ such that the homology class of C in $H_{2}(X, \mathbb{Z})$ is equal to zero.

References

[HKLR87] N. Hitchin, A. Karlhede, U. Lindström, M. Rocek, HyperKähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), no. 4, 535-589.
[CE53] E. Calabi, B. Eckmann, A class of compact, complex manifolds which are not algebraic, Ann. of Math. (2) 58, (1953), 494-500.
[H77] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52. Springer-Verlag, 1977.
[R87] M. Reid, The moduli space of 3-folds with $K=0$ may nevertheless be irreducible, Math. Ann. 278 (1987), no. 1-4, 329-334.

