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Abstract. We describe two constructions of hyperkahler manifolds, one based
on a Legendre transform, and one on a symplectic quotient. These construc-
tions arose in the context of supersymmetric nonlinear σ-models, but can be
described entirely geometrically. In this general setting, we attempt to clarify
the relation between supersymmetry and aspects of modern differential
geometry, along the way reviewing many basic and well known ideas in the
hope of making them accessible to a new audience.
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1. Introduction

In this article, we describe two constructions of new hyperkahler manifolds1.
These constructions, which arose first in the context of certain supersymmetric
models [4, 5], have a clear geometric meaning. We attempt to clarify the relation of
supersymmetry and modern differential geometry (at least in this particular
context), and to break down the language barrier between geometers and
supersymmetrists via the description of these constructions. To this end, we review
many basic and well known notions in terms intended to make them accessible to a
new audience.

After sketching the structure of the article we end this section by reviewing
basic notions of Kahler and hyperkahler geometry and establishing some
notation. In the following section, we describe our constructions, without using
supersymmetry, and give examples. The first construction uses a Legendre
transform to relate the Kahler potentials of certain hyperkahler manifolds to a
linear space. The second construction is based on a symplectic quotient of a
hyperkahler manifold. We give a number of examples. We also discuss in detail the
cases when both constructions are applicable. In Sect. 3, we give some background
needed to explain the geometric meaning of the constructions: quotients,
symplectic and Kahler quotients, and twistor theory, and then give the geometric
interpretation. In Sect. 4 we describe nonlinear σ-models and related material
needed as a background for subsequent sections. In Sect. 5, we describe essential
aspects of supersymmetry and, in Sect. 6, we use supersymmetry to derive the
constructions. The most common use of various index types is indicated in Table 1.

On a 2n (real) dimensional Kahler manifold (see discussion above (3.20)) we
choose holomorphic coordinates zq,z*,q = l,...,nin which the complex structure

Reviews of Kahler and hyperkahler geometry for physicists can be found in [1-3]
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Table 1. Most common use of indices throughout the paper. All dimensions indicated are real

Indices Description Range

i,j,... Coordinates on a manifold M 1,.

p,q,... Holomorphic coordinates on a complex manifold M 1,.
p, <?,... Antiholomorphic coordinates

ij',... Generic; Varied
Often, a restricted range of coordinates 1,.
on a hyperkahler manifold M

a,b,... Spacetime coordinates Usually 1,2, 3

a,β,... Spacetime spinor indices Usually 1,2

A,B,... Basis elements of a Lie algebra g 1,...,dimg

In these coordinates the metric g = g^dx*®dx* ({x*} = {zp, z5}) is expressed in
terms of a Kahler potential X,

where KqP = d2K/dzqdzp and the Kahler form is the nondegenerate symplectic
2 " f o r m

 ω = 2iddK = 2ίKqpdzq Λdfp=- g.βdx' Λdx*. (1.3)

A vector field is Hamiltonian, holomorphic or Killing if it preserves ω, I or g
respectively

Lxω = 0, LXI = O9 or Lxg = 0, (1.4)

where Lx is the Lie derivative along X. Any two of these conditions imply the third.
In particular, the last condition implies that a Killing vector fulfills Killing's

. , = 0. (1.5)

We can expand an arbitrary Killing vector field over a basis of Killing vector fields
kA that generate the Lie algebra of the isometry group

X = XΛkΛ, (1.6)

r ^ fc Ί _ c Cfc (17)

where XA and cAB

c are constants. A holomorphic Killing vector in holomorphic
coordinates can be split into a holomorphic and an antiholomorphic piece

On any manifold with a symplectic structure ω the relation Lxω = 0 is the
integrability condition for the existence of a Hamiltonian function μx for the vector
field X,

* ω* = κ V (1.9)
When the manifold is Kahler, a holomorphic Hamiltonian vector field is a Killing
vector field and (1.9) becomes (in holomorphic coordinates)

ω- XAkq

A — — iK -XAkA = μx , μx = XAμA (1.10)

In this case we call μx a. Killing potential and {μA} is a basis corresponding to {kA}.
Equation (1.10) defines the Killing potential only up to a real constant. Up to
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abelian factors in the algebra, we fix this constant by requiring that μx is

equivariant, X μ r = μ [χ,n ^ k'AμB,p + KμBrp = cΛB

cμc. (1.11)

If the relevant Lie algebra cohomology class is nontrivial, there may be
obstructions, i.e., irremovable constants on the right-hand side of (1.11), (for
examples, see [6, 3]). If the Lie algebra is semisimple, we can compute μA

algebraically from (1.11) using (1.10). The potentials μA are maps from the manifold
to the dual of the Lie algebra; when μA are equivariant we call them moment maps.
[See discussion from (3.8) to (3.13).]

A 4n (real) dimensional hyperkahler manifold has three independent complex
structures I, J, and K satisfying the quaternion algebra identities:

I2 = J2 = K 2 = - 1 , I J = - J I = K, etc. (1.12)

We call the corresponding symplectic forms ωP, P = 1,2,3, ωP = — (gl, g J, gK). If we
choose holomorphic coordinates with respect to I, the combinations

ω±=(ω2±ίω3), ω+=ω+q(z)dzp Λdzq, ω " = ω τ (1.13)

are holomorphic and antiholomorphic. A triholomorphic Killing vector X
preserves all three symplectic forms

LxωP = 0. (1.14)

This implies the existence of three independent Killing potentials μfP) = XΛμA

) for a
Killing vector field X. We can choose one to be defined with respect to the Kahler
form, cf. (1.10), and holomorphic and antiholomorphic potentials defined with
respect to ω±:

<(Mz) = /4», μ~=μ+. (1.15)
Again, Eq. (1.15) defines μ ± only up to a complex constant, which we fix (except for
abelian factors) by requiring equivariance, cf. (1.11):

J) \j p = ϊcAB

cμ£ , etc. (1.16)

As before, there may be obstructions to (1.16).

2. Constructions of New Hyperkahler Metrics

(A) Legendre Transform

We start with 3n real dimensional flat space E = RnxCn (we may choose
coordinates xιeR, z{eC, ι = l,...,n). We consider a real function F:E^>R, i.e.,
Fix1, z\ z% that satisfies the system of linear differential equations

Fχίχj + Fzi,j = 0. (2.1)

This implies that F satisfies the three-dimensional Laplace equation on all three-
dimensional subspaces (X,Z,Z) with X = aix\ Z = atz\ Z = aiz

i determined by an
n-vector with real components at. A characterization of F, equivalent to (2.1), is as a
contour integral in an auxiliary variable ζ [7],

F(x\ z\ ?) = Re - ^ § dζG{n%\ 0, (2.2)
Ini c
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where . . „ .
ηι = zι-ζxι-ζ2zι. (2.3)

Then the n-dimensional Legendre transform of F with respect to the real coordinates
xι gives the Kahler potential K{μ\ΰ\z\f) of a An real dimensional hyperkahler
manifold [5] : . . . .

K{u\ ύ\ z\ zι) = F(x\ z\ zι) - (uι + ΰι)xι, (2.4)
where xι is a function of z\ z\ and uι + ΰι determined by

—j=uι + u. (2.5)

The metric of the manifold is computed as usual from the Kahler potential (1.2)

\g = KuιaJduι(g)dϋj + Kuizjduι®dzj + KziQjdzι(S)dΰj + Kzizjdzι®dzj. (2.6)

From (2.4, 5), the Kahler potential is independent of w'-ΐΓ, and hence the metric
(2.6) has n abelian holomorphic Killing vectors [cf. (1.4)—(1.8)]. (Actually, the
Killing vectors are triholomorphic, see below [22].)

The line element can be computed explicitly in nonholomorphic coordinates
even when Eq. (2.5) cannot be solved explicitly for x\ We use the original
coordinates x\ z\ and z\ and n additional real coordinates, e.g., y^iφ — u1). The
line element in these coordinates is (2.6) with [8]:

K . — —(F • ϊ " 1 K . - ( F , Γ ^ , •
uιΰJ \ χJχ1' ? uιzJ v xkx1/ x*zJ ?

Kzizj = — (Fχiχj + Fziχk(Fxιχk)"x FxιzJ), (2.7)

2duι = Fχίχjdxj + Fχίzjdzj + Fχίzjdzj + idy{.

The construction also explicitly generates the quaternionic structure of the
hyperkahler manifold [cf. (1.12)]. The corresponding 2-forms are [cf. (1.3,13)]

\ωι = i(KulQjduι A dΰj + K^jdu1 A dzj + K^^dz1 A dΰj + Kzizidzi A dzj),

iω+= duι A dzι - (KuίQj) ~x K-UJZM A dzk, (2.8)

ω~=ω+.

The isometries generated by

clearly preserve the 2-forms ω±

ί and hence are triholomorphic [cf. (1.14)].
We now describe several examples. The basic ingredients are the different

descriptions of flat four dimensional space given by the functions G(η, ζ) and
contours C [see (2.2)] [7]:

_ 1 2 with any contour enclosing the origin once
yj\ = — TΓTTϊ 7? . i i i (2.10)

2ς ό m anti-clockwise direction
and i

with the contour in Fig. 1. (2.11)

The corresponding function F(x,z,z) = F(r), r2 = x2 + 4zz, are:

(2.12)

). (2.13)
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Fig. 1. C o n t o u r of i n t e g r a t i o n . ζ+ a r e t h e r o o t s of η(ζ): rj= — z{ζ — ζ + ){ζ — £-)>
ζ± = -(l/2z)(x±r), r2 =

The last term in (2.13), \x ln(4zz) = ̂ x(ln(2z) + ln(2z)), can be dropped, as, after the
Legendre transform (2.4, 5), it merely generates a holomorphic coordinate
transformation, u->u + ̂ ln(2z).

A number of interesting manifolds can be constructed as various superpo-
sitions of Fx and F2. For example, the multi-Eguchi-Hanson family of self-dual
instantons [9,10] is found by superposing F2 with itself about different (mass)
Points ρA: m + 1

^ E H = Σ F2{r-QA). (2.14)
A=ί

The Taub-NUT family of self-dual instantons [10] is found by adding an Fx as
well: m

~ ~ " Σ Fi{r-QA)- (2.15)

In higher dimensions, the metrics due to Calabi [11] are constructed as follows:

m / m \

Fc= Σ F2(ή + F2 ( Q - Σ H (2.16)

New metrics can be found by adding more mass points to (2.16) as in (2.14), and by
adding Fx terms as in (2.15) [5, 8].

The global properties of manifolds constructed by the Legendre transform
have not been investigated in general. However, the examples given here can also
be constructed by the quotient construction discussed below, which allows a
global analysis.

(B) Symplectίc Quotient

In this construction, we start with a hyperkahler manifold M, for example,
M = CnxCn, with one or more triholomorphic isometries acting on it. A new,
lower dimensional, hyperkahler manifold is constructed as the quotient of a
real subspace of M by some subgroup of the isometry group. Alternatively we can
view the construction as the quotient of a holomorphic subspace of M by a sub-
group of the complexification of the isometry group. (The geometric pictures
of these alternatives are presented in Sect. 3.) In either case the subspace is defined
by a set of algebraic equations. If the equations are well behaved (free of cusps,
etc.) and if the quotient group is compact and acts freely (i.e., has trivial isotropy
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group) on the subspace the equation define, then the manifold is complete. Of
course, the construction can be used even when the manifold is incomplete,
e.g., has singularities; in particular, if the isotropy group on some subspace has
only a finite number of elements, the resulting quotient space is a hyperkahler
orbifold. We work with holomorphic coordinates zp, zp, p = l, ...,2rc, cf. (1.1-3).

We assume that the manifold has triholomorphic Killing vectors X = XAkA [cf.
(1.6-8)] where kA = kAdp + kp

Adp, A = ί9 ...,fe is a basis for the Lie algebra of the
subgroup of the isometry group by which we wish to divide.

We can consider the construction as the quotient of the real subspace μ{j) = 0
[cf. (1.14-15)] by the quotient group. This quotient is well defined because moment
maps are equivariant (1.16). The holomorphic view of the construction gives the
Kahler potential explicitly. The holomorphic subspace is defined by the conditions

μϊ=μϊ=0. (2.17)

Note that because (μ~) μ+ is (anti-) holomorphic the constraint (2.17) is preserved
by the complexifίcation of the isometry group, which acts by

z' = eAz, z' = eΛz, (2.18)

where A = AA(z)kp

Adp, A = AA(z)kAdp. (2.19)

The relation μA

ι) = 0 is preserved only by the real action. We introduce a real vector
field V that is an (in general different) Killing vector at each point:

A (2.20)

We also introduce the complementary real vector field Y that together with V
generates the complexified group at each point:

y= - i i 7 = - ι- vΛ(kAdp-k^dp). (2.2i)

We use VΛ to enlarge the submanifold μA

γ) = 0 to a higher dimensional submanifold

eYμT = 0, (2.22)

which is preserved by the complexified action provided that V is chosen
appropriately. The k equations (2.22) are to be solved for the k components VΛ,
which determines the vector field V. (In eγ, Y does not act on VA.) The Kahler
potential K of the new manifold is defined on the quotient of the subspace (2.17) in
terms of auxiliary real functions VA(z, z) [3]:

K = K(z, z) - j dtetγμv = K(z, z) - ^ μv, (2.23)

where μv=VAμA

ί\
Equation (2.22) can be found by treating V as an independent variable and

extremizing K with respect to arbitrary variations of it:

hit
j^=Ooer^ = 0. (2.24)

This gives the symplectic quotient on hyperkahler manifolds.



542 N. J. Hitchin, A. Karlhede, U. Lindstrόm, and M. Rocek

As an example we consider M = flat Cn x Cn with coordinates (ζ\ <f) i = 1,..., n
[5]. The holomorphic symplectic structure is ω+ = 4dξi A dζ\ We study a compact
group with k generators acting on M by some antihermitian matrix representation
(TA)ipA = I,...X with

This defines a triholomorphic action. The Killing potentials for the Killing vectors
are

j ^ (2.26)

^ = - 2 ( ^ ( 7 ^ + ̂ ) , (2.27)

where cA = cA and bA, bA are arbitrary constants for each U(\) factor. The Kahler
potential for M is

K=ζίζi + ξiξi

9 (2.28)

whereas the Kahler potential for the quotient manifold is [cf. (2.23)]

^=ζV¥)ljζ' + ξi(e-iV)ιff-cAV\ (2.29)

where V=VATAis determined by the algebraic equations

iζeiVTAζ-ίξTAe-ivξ-cA = O. (2.30)

The holomorphic subspace (2.17) is the quadric

(2.31)

(C) Quotients and Legendre Transforms

In this subsection we apply the quotient construction to hyperkahler manifolds
obtained by the Legendre transform method; such {An dimensional) manifolds
have n commuting triholomorphic isometries, and thus we can divide by k < n (7(1)
factors to get a 4(n — k) dimensional manifold. In the special nonholomorphic
coordinates x, y, z, z [cf. (2.4-7)] Eqs. (2.17-19) that define the hyperkahler
quotient become linear, and the construction can be carried out explicitly.

We start from K^ + ΰ^z1,^) as defined in (2.4) and divide by a linear
combination of k of the isometries (2.9):

(2.32)

From (1.10) we calculate

iti^-ύ^-CΛ, cA = cA (2.33)

and from (1.15), (2.8):

ϊUtfJ + bJ (2.34)
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Evaluating (2.23) we then find

+ ΰi+V\z\zi), (2.35)

where VA are the auxiliary real functions and Vi = qi

AV
A. Now (2.4) gives

K = cAV
A + F(x,z,z)-(ui + ΰi+Vi)xί. (2.36)

The quotient (2.17, 22) reduces to restricting (x,z,z) to the hyperplanes

O, (2.37a)

0. (2.37b)

The relation (2.37a) makes K [cf. (2.36)] independent of V. Since x, z, and z are inert
under the isometry, this defines the quotient. The examples given at the end of Sect.
2. A arise as quotients of flat space in its Legendre transform description, with the
constants cA, bΛ, and bA assembled into the vector ρA (2.15).

3. Geometric Interpretation

(A) Quotient Manifolds

If X is a topological space with an action of a group G, then the quotient space X/G
- the space of orbits - has a natural topology with respect to which the projection
map

p.X^X/G (3.1)

is continuous. Bad actions of groups, such as the irrational flow on a torus, can give
non-Hausdorff quotient spaces, but if G is compact and X is Hausdorff, then so is
X/G.

Suppose now we replace X by a manifold M and assume that G is a compact
Lie group acting smoothly on M. If G acts freely, i.e., the identity element is the
only one with fixed points, then the quotient space M/G can be given the structure
of a manifold with respect to which the projection p is a smooth submersion.
Because the action is free, non-zero vector fields generated by the Lie algebra g
have no zeroes and so through each point meM there is a subspace Vm (with
dim Vm = dimg) of the tangent space Tm spanned by the vector fields in g. This space,
called the vertical space, is the tangent space to the orbit of G through m. The
tangent space to p(m) e M/G is then isomorphic to the quotient vector space TJVm

(see Fig. 2).

Now let M be given a Riemannian metric g, and suppose G acts as isometries.
[In this case the vector fields kA in (1.6) form a. basis for Fw.] We may define an
induced Riemannian metric on M/G as follows. Let Hm C Tm be the subspace of
vectors orthogonal to Vm called the horizontal space. Then the derivative of p maps
Hm isomorphically to the tangent space of the quotient at p(m). A tangent vector
X e Tp(m) then has a unique horizontal lift X e Hm C Tm, and we define an inner
product h on Tp(m) by

). (3.2)
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M/G
Tp(m) p(m)

Fig. 2. The total space M and its projection to the quotient space M/G

Since G preserves the metric g, this is independent of the choice of point m in the
orbit p~ι{p{m)\

This family of horizontal subspaces has an interpretation in terms of
connections. The manifold M is, by definition of the free action of G, a principal
G-bundle over M/G. Also, the vector fields corresponding to a basis of the Lie
algebra cj form a basis for Vm at each point meM, hence the orthogonal projection
from Tm to Vm defines a 1-form θ with values in g and transforming under the
adjoint representation of G. This is therefore a connection form for the principal
bundle (see [2]).

In more concrete terms, if kA (1 ̂  A ^ dim G) are the vector fields corresponding
to a basis of g, and x£ are local coordinates on M,

d_
Ί&)=8\kB τzϊ

ΛB

where HAB = [g(kA, feB)] ι . Given a local gauge, i.e., section s of p: M-
usual connection form is

(3-3)

•M/G, the

Ajάy1 = s*(θfdx*). (3.4)

The pullback of Af to spacetime is the connection in (4.16).
Now suppose M is endowed with some extra differential geometric structure

compatible with the metric, then M/G will not in general inherit the same structure.
For example if M is a Kάhler manifold and G = C/(l), then M/G is odd-dimensional
and never Kahlerian. There is nevertheless a means of obtaining one Kahler
manifold from another with a group action, which generalizes in a straightforward
way to the hyperkahler case. This is based on the symplectic quotient or reduced
phase space of Marsden and Weinstein [12].

(B) Symplectic Quotients

Let M2n be a symplectic manifold, i.e., a manifold with a closed, non-degenerate
2-form ω. Suppose also that the Lie group G acts on M preserving the symplectic
form. Then, if X is a vector field generated by this action, the Lie derivative Lxω
vanishes.
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Now for any differential form ω of degree p

Lxω = i(X)dω + d(i(X)ω), (3.5)

where i(X)ω denotes the (p — l)-form obtained by taking the interior product
(contraction) with X. We therefore have, for the symplectic 2-form ω,

0 = Lxω = d(ί(X)ω), (3.6)

hence the 1-form i(X)ω is closed, and if the first cohomology group Hι(M,R)
vanishes, then by de Rham's theorem there is a function μx on M such that [cf.
(1.9)]

dμx = ί(X)ω. (3.7)

(Locally, this is always true, but we require μx to exist globally.) Since ω is non-
degenerate, the vector field X is equally determined by the 1-form i(X)ω, and hence
by the Hamiltonian function μx. Adding a constant to μx clearly leaves (3.7)
unchanged and this (if M is connected) is the only ambiguity in the choice of μx.

Putting all these functions together, we obtain a map

μ : M ^ g * (3.8)

to the dual space g* of the Lie algebra defined by

<μ(m),O = μ » , (3.9)

where X is the vector field generated by ξ e g.
There is a natural action of G both on M and g* and we should like to adjust the

ambiguity in the definition of μ to make μ equivariant, i.e., commute with the two
actions [cf. (1.11)]. For a general Lie group G there may be an obstruction to doing
this which lies in a cohomology group of the Lie algebra, but if G is semi-simple or a
torus this obstruction vanishes [12]. In any case, if G is compact we may assume
that μ is equivariant.

When an equivariant function μ exists, it is called a moment map for the
symplectic action of G on M. The remaining ambiguity in the choice of μ is now
simply the addition of a constant element in g* which is left fixed by G, i.e., a
character of G. If we have an invariant inner product on g, then identifying g* = g
we are allowed to modify μ by adding a constant in the center of g.

The nomenclature is clear if we take M=T*R3, the cotangent bundle of R3

with its canonical symplectic structure

^ω = dxι Λdp'+dx2 Λdp2 + dx3 A dp3. (3.10)

A vector field X = aιd/dxι corresponding to a translation satisfies

ί(X)ω = cϊdp1 = diaψ). (3.11)

Hence μ: T*#3->g* = # 3 is

μ(ϊp) = P, (3.12)

giving the linear momentum.
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For the natural action of SO (3), where §*^R3, we obtain

μ{x,p) = xxp, (3.13)

giving the angular momentum.
Consider now the submanifold N = μ~1(μ(m)) (the points in M that map into

the same element of g*) and let Y be a tangent vector to JV. Then

dμ(Y) = 09 (3.14)

and hence

0 = dμx(Y) = ω(X,Y) (3.15)

for all vector fields X generated by g. As the form ω is non-degenerate this gives
dim G independent equations for Y giving

= 2rc-dimG (3.16)

so AT is a submanifold of dimension In — dimG.
Now suppose there exists meM such that μ(m) = 0, and let N = μ ~ 1(0). Since G

certainly keeps the origin in g* fixed, and μ is equivariant, G acts on the manifold
N. We form the quotient N/G which is a manifold of dimension 2n — 2 dimG. It
posesses a natural 2-form ρ defined by

ρ(YuY2) = ω(Ϋl9Ϋ2)9 (3.17)

where Yt is any tangent vector to iV which projects to Yb a tangent vector to N/G.
We must check that this is well-defined. However, if X is a vector field generated by
g, then ω(X+ Ϋl9 Ϋ2) = ω(X, Ϋ2) + ω(Ϋl9 Ϋ2) = ω(Ϋl9 Ϋ2) from (3.15).

The form ρ is in fact a symplectic form on N/G. We first check its non-
degeneracy.

If ρ(Yl5 Y) = 0 for all Y, then by the definition of ρ, ω(Ϋl9 Ϋ) = 0 for all Ϋ
tangent to N. But from (3.15), the only vectors which annihilate the (In — dimG)
dimensional tangent space to N at m are those generated by g, hence Ϋ1 is the
restriction at m of some vector field X from g, so that Yl9 the projection of Ϋί9 to
N/G, is zero. Thus ρ is non-degenerate.

Secondly we prove that ρ is closed. If we let7: iV->M denote the inclusion map,
then by the definition (3.17),

P*Q=j*ω, (3.18)

where p:N^N/G is the projection. Applying the exterior derivative,

p*(dρ) = d(p*ρ) = d{j*ω) =j*(dω) = 0. (3.19)

Since p is a submersion (p* is injective on forms), the 3-form dρ on N/G is itself zero,
so ρ is closed.

We have thus produced a "quotient" of one symplectic manifold by a group of
symplectic transformations to obtain another whose dimension is 2dimG less.
More generally, if we take a point x e g * which is not fixed by G, but has isotropy
subgroup H, then μ~1(x)/H has a symplectic structure in the same way.
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(C) Kάhler Quotients

Let M2n now be a Kάhler manifold, i.e., a complex manifold whose complex
structure I is covariantly constant with respect to the Levi-Civita connection of a
metric g invariant under I (i.e., a hermitian metric). Under these circumstances

ω(X,Y) = g(lX9Y) (3.20)

defines a closed (in fact covariantly constant), non-degenerate 2-form and so M is
in particular a symplectic manifold. The form ω is called the fundamental 2-form
or Kahler form.

Suppose G is a compact Lie group acting freely on M and preserving both the
metric and the symplectic form [and hence by (3.20) the complex structure] [cf.
(1.4)]. We can produce, as above, the symplectic quotient M, which is a symplectic
manifold. It also has a naturally induced metric since M = N/G, where AT CM is
endowed with the metric g restricted to JV, and in Sect. 3A we saw how to put a
metric on a quotient. We show:

Theorem 3.1. The induced metric on M is Kάhlerian, with Kahler form ρ.

Proof. We consider first N = μ~ι(0)cM with its induced metric. The construction
of the Levi-Civita connection on N is standard in differential geometry [2]: Take a
tangent vector field Y on JV. This is a section of TM restricted to JV. Using the Levi-
Civita connection on TM of the metric g we take its covariant derivative. This will
in general no longer lie in the subbundle TNC TM\N but by orthogonal projection
we push it back into TN and obtain a connection on TN which is the Levi-Civita
connection. All that is required is to check that it preserves the metric and is
torsion-free, which is straightforward.

Finding the Levi-Civita connection of the quotient metric on N/G is similar,
but less familiar. Here we have the horizontal bundle H C TN over JV which is
identified by the projection p: N-+N/G with T(N/G). The Levi-Civita connection
on T(N/G) with the metric h defined in Sect. 3A then pulls back to a G-invariant
connection on H over JV. This, we claim, is the connection VH on H obtained by
orthogonal projection of the Levi-Civita connection on TN. To prove this we need
to check that VH preserves the metric honH (which is clear) and is torsion-free for
horizontal vector fields. So let X, Y be two commuting vector fields on N/G. Lift
them to horizontal fields X, Ϋ on JV. They no longer commute, but from the
principal bundle formalism of connections [2], their Lie bracket is vertical. In fact

[X,T] = F(X9Y)9 (3.21)

where F is the curvature of the connection θ defined in Sect. 3 A by the horizontal
subspaces. Consequently,

Ff 7 - V?X = PB(VXΫ- VΫX) = PH{F{X, Ύ)), (3.22)

where PH is the projection onto H.
Putting these two constructions together we see that the Levi-Civita connec-

tion of JV? = N/G may be described by the orthogonal projection of the Levi-Civita
connection of M from TM over JV to the horizontal subbundle H.
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Consider, however, the orthogonal complement of H in TM. The complement
of TN in TM is spanned at m e N by the normal vectors gradμ^, A = 1,..., dim G
and the complement of H in TN is spanned by the vertical vectors kA, where the
vector fields kA arise from a basis of g. But

g(grad/Λ Y) = dμx(Y) = ω{X9 Y) = g(lX, Y),

and so

(3.23)

(3.24)

Thus the vector space spanned by gradμ^ and kA is a complex vector space, and so
the complement of H and hence H itself is a complex vector bundle.

The metric on M was Kahlerian, so I commutes with the covariant derivative.
Since H is complex, I commutes with the orthogonal projection and so I commutes
with the connection VH. Thus the induced metric on M is Kahlerian.

This infinitesimal calculation disguises one essential aspect of the problem: the
vector fields X, IX generate a complex Lie algebra of holomorphic vector fields and
hence a local holomorphic action of the complex group Gc obtained from the
complex Lie algebra g® C. Suppose this extends to a global action (equivalent to
the completeness of the vector fields IX) then the symplectic quotient M,
considered as a complex manifold, is simply the ordinary manifold quotient as in
Sect. 3A in the holomorphic setting. However, since Gc is not compact, we would
obtain non-Hausdorff behaviour in this quotient, unless we restrict the action of
Gc to a suitable open set of points in M. This open set consists of those points
whose Gc orbits meet N and are called stable points (see Fig. 3). In many cases in
algebraic geometry [13] this idea of stability coincides with a pre-existing
algebraic definition called Mumford stability.

(D) Hyperkάhler Quotients

Suppose finally that M4n is a hyperkάhler manifold having a metric g and
covariantly constant complex structures I, J, K which behave algebraically like
quaternions:

IJ=-JI = etc. (3.25)

Gc-orbit

M

Fig. 3. The orbits of the group G and of its complexification Gc. G acts on μ 1(0) and M is the
quotient space corresponding to this action. The same space is obtained if one considers the
extension of μ - 1(0) by exp(/X) and takes the quotient by Gc
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Let G be a compact Lie group of isometries acting freely on M and preserving the
structures I, J, K. The group G preserves the three Kahler forms ωί9 ω2, ω 3

corresponding to the three complex structures, so we may define three moment
maps μί9 μ2, μ3. More invariantly these can be written as a single map

(3.26)

The basic theorem, generalizing Theorem 3.1 is the following:

Theorem 3.2. The quotient metric on μ~ί(0)/G is hyperkάhlerian.

Proof. We first focus attention on one complex structure I, with Kahler form ωv

Consider the complex function

(3.27)

Now

dμx

+(Y) = ω2(X9 Y) + UD3(X9 Y) = g(3X9 Y) + ig(KX9 Y), (3.28)

and

dμ\(IY) = g(3X91Y) + ig(KX> IY) = - g(KX, Y) + ig{3X9 Y). (3.29)

Thus

dμx

+(lY) = idμx

+(Y) (3.30)

for each vector field Y
Let d/dzp be a basic complex vector field arising from a local coordinate system

{zp}, holomorphic with respect to I, on M. Then

Iέ=- ίέ' (3 31)

and so from (3.30, 31)

.8μX

+

and hence μx+ is a holomorphic function.
Thus N = μ+1(0) = μ2

 1(0)nμϊ x(0) is a complex submanifold of M, with respect
to the complex structure I, and so its induced metric is Kahlerian.

The group G acts on N preserving the Kahler form and its moment map is
clearly the restriction of μx to N. Hence by Theorem 3.1 the quotient metric on
Nrλμϊί(0)/G = μ~ί(0)/G is Kahlerian with respect to the complex structure I.

To complete the proof, repeat the argument with the complex structures J and
K.

To interpret the function μ+ which arose in the proof, consider the complex
2-form

(3.33)
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Then

= 0. (3.34)
/

Thus ω + is a 2-form of type (2,0), i.e., in local coordinates

ω+=ωpqdzpΛdzq. (3.35)

Since it is covariantly constant it is holomorphic and easily seen to be non-
degenerate in the complex sense:

ωM

++0. (3.36)

The action of Gc on M preserves ω+ and the function

(3.37)

is the complex moment map for this action. Thus the hyperkahler quotient
μ~ί(0)/G is the symplectic quotient of Sect. 3B but in a holomorphic setting.

The procedure for finding new examples of hyperkahler manifolds in Sect. 2
involves taking M to be a flat hyperkahler manifold - a vector space over the
quaternions - and considering the actions of groups on this. In particular any
subgroup G^Sp(/c) may be taken. The group requires a center to produce a
moment map for which the origin in the vector space (which is clearly not acted on
freely by G) is not contained in μ~ *(()).

(E) Kάhler Potentials

For the relationship with the supersymmetric σ-model, it is important to find the
Kahler potential K of the quotient space M of Sect. 3C, i.e., a real function such
that

ρ = 2iddK, (3.38)

where ρ is the Kahler form of M. The function K is well-defined modulo the
addition of a function f+f, where / is an arbitrary holomorphic function. The
geometrical interpretation of the Kahler potential is via connections on complex
line bundles.

Let M be a Kahler manifold with Kahler form ω, and suppose ω represents an
integral class in the de Rham cohomology group H2(M, R). We may then interpret
2πiω as the curvature form of a connection on a hermitian line bundle L over M.
Moreover, since ω is of type (1,1) we can take this to be a holomorphic line bundle.

Remark. The condition that the cohomology class of the Kahler form be integral is
not strictly necessary: One can interpret ω as the curvature form of a connection
on a principal bundle with the translation group R (rather than its quotient
U(\) = R/Z). However, connections on vector bundles are more familiar than
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connections on affine bundles, and so we use this language below [the affine
description is used in Sect. 6, Eqs. (6.50-53)].

Let s be a local non-vanishing holomorphic section of the line bundle L; then
we define the connection by

Vs=d4fs = θs. (3.39)

This is the unique connection compatible with (i.e., preserving) both the
holomorphic structure and the hermitian metric || s ||2 = hss. The curvature F of the
connection is

F = dθ = ddlog\\s\\2=-ddlog\\s\\2. (3.40)

Thus

^ l o g | | s | | , (3.41)
zπ

giving K= —log| |s | | 2 as a Kahler potential. Changing K by adding a function
4π

/ + / corresponds to changing the local holomorphic section s.
Now suppose we have a compact group G acting as in Sect. 3C, preserving the

metric and complex structure and with a moment map
μ:M->g*. (3.42)

Under these circumstances we obtain an action of the Lie algebra of G, and of G
itself under suitable completeness conditions on the line bundle L. We define the
Lie derivative of a section s of L by a vector field X generated by g according to the
Γ U l e '-12-' Lxs = Vxs + 4πίμxs = 4πvxs, (3.43)

where vx is a holomorphic function. To see that this is an action, note that

[Lx, Ly] = [_VX + Aniμx, Vγ + 4πiμy] = [Vx, Vj] + 4πi(Xμγ- Yμx). (3.44)

But the curvature F of the connection V gives

4πiω(X, Y) = 2F(X, Y) = VXVY-VYVX- VιxJ], (3.45)

hence,

[Lx, L y] = Vv, n + 4πiω(X, Y) + 4πi(Xμγ - Yμx). (3.46)

On the other hand, by the equivariance of the moment map,

Xμγ = μV Ύ\ (3.47)

and by the definition of μx,

Yμx = dμx( Y) = ω(X, Y). (3.48)

Thus from (3.46) we obtain

ίLx, Ly] = Vιx,Y] + AπiμV ** = L [ X,y ], (3.49)
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showing the existence of an action of the Lie algebra. In a similar manner we can
check that this action extends to an action of g®C by setting

Llxs = Vιxs - 4πμxs. (3.50)

Note that from (3.50), the vector fields IX do not preserve the hermitian form h on
L. In fact, since the connection V does preserve it, it follows directly from (3.50) that

Lιxh = Sπμxh. (3.51)

Returning to the quotient construction of a Kahler manifold in Sect. 3C we
have the diagram in Fig. 3. The holomorphic map from a point meM to
M = μ~ 1{0)/G is obtained by first taking m to μ ~ x(0) by a group element of the form
exp(IX)eGc and then assigning to it the G-orbit in μ - 1(0) in which it lies. The
holomorphic map therefore factors as

M—>/T1(0)-Uμ-1(0)/G (3.52)

with

π(m) = exp(IX(m)) m. (3.53)

The Kahler form ρ of M satisfies, from Sect. 3B,

p*ρ=j*ω, (3.54)

where;: μ~ 1(0)->M is the inclusion, so pulling back ρ from M to M is the same as
restricting ω to μ - 1(0) and pulling back by π. Call this form ώ.

To find the corresponding Kahler potential, pulled back to M, we use the
curvature interpretation of the symplectic form. Then, parallel to the description of
ω above, we see that 2πiώ is the curvature form of the connection V obtained by
restricting to μ~ 1(0) and pulling back to M via the projection π. Since the fibers of π
are contained in Gc orbits and L is acted on by Gc, the connection V is defined on
the same line bundle L.

The hermitian metric which defines the Kahler potential is left invariant by G
but not by Gc. In fact if h denotes the hermitian metric on L and g e Gc, we may
define a function c(m,g) on M x Gc by exponentiating (3.51)

(3.55)

Now if s is a local non-vanishing holomorphic section of L on the quotient M, the
Kahler potential is

J f c (3.56)
4π

where /us the hermitian metric preserved by V. But this, by the description of the
connection above is

ft(m) = (g*h)(m), (3.57)

where g = exp(IX) is the element of Gc which takes m to μ~ ι(0). Hence from (3.55),

K-K=^-\og(g*h/h)=^-c(m,g), (3.58)
4π 4π
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SO

K = K+^-c(m,g), (3.59)
4π

where g = g(m) is defined as above. Note that, from (3.55), c satisfies the condition

c(gim, g2) + c(m, gί) = c{m, g2g1), (3.60)

and hence

c(eixm, eiY) + c(m, eix) = c(m, eίYeix). (3.61)

Differentiating with respect to Y and setting 7 = 0 we see that the derivative of
c(m,g) with respect to the second variable, in the direction Y is equal to the
derivative of c(g>m,eiY) in the direction Y and from (3.51) and (3.55) this is
8πμy(g m). Thus the choice of g{m) to make μ(g m) = 0 may be interpreted as
making the function c(m, g) independent of the second variable, as discussed in
(2.24). The formal expression for c(m, g) in (2.23) is essentially the integration of
(3.51H3.55).

Calculating the Kahler potential thus involves solving the equation

μ(eiX'm) = 0 (3.62)

for X
In the hyperkahler case this is all carried out on the Kahler manifold μ+^O).

There is, however, one special case in the realm of hyperkahler geometry where the
Kahler potential arises in a simpler manner. Suppose M 4 " is a hyperkahler
manifold with an isometric action of the circle which acts non-trivially on the
3-dimensional space of covariant constant 2-forms spanned by ω l 5 ω 2 , ω3. There is
only one non-trivial action, i.e., the circle fixes ωγ and rotates the ω 2 , ω 3 plane. If X
is the corresponding Killing field then

Lxω1=0, Lxω2 = co3, Lxω3=— ω 2 . (3.63)

Now let μ be the moment map of this action with respect to the preserved
symplectic form ωv Consider the complex structure J with Kahler form ω 2 . Now,

dμ(JY) = (dμ + dμ) (J7) = i(dμ - dμ) (Y), (3.64)

where d and (fare the (1,0) and (0,1) parts of d with respect to J. But

dμ(JY) = i(X)ω(JY) = g(IX9JY) = g(KX9 Y) = ω3(X, Y). (3.65)

Thus from (3.64),

i(X)ω3 = i(dμ-dμ). (3.66)

Hence

= d(i(X)ω3) = Lxω3= - ω 2 , (3.67)

= 2ίddμ. (3.68)
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Hence the moment map for ωί is a Kahler potential for ω2. This is a situation
which arises quite frequently in examples, such as the Taub-NUT metric, Eguchi-
Hanson metric, and Calabi metric.

(F) Twίstor Spaces

The Legendre transform construction of Sect. 2 produces hyperkahler metrics
from holomorphic functions. The natural setting for this is a generalization of
Penrose's non-linear graviton construction [14] to hyperkahler manifolds, which
we describe here. This itself forms part of a theory of quaternionic manifolds
developed by Salamon [15,16].

Let M4" be a hyperkahler manifold with complex structures I, J, K. Then if
(α, i>, c) is a unit vector in R3, the multiplicative properties of I, J, and K imply

(αI + W + c K ) 2 = - l , (3.69)

and so there is a whole 2-sphere of complex structures compatible with the metric
and connection. The idea of the twistor approach is to incorporate all these
structures into one complex structure on a larger manifold, the twίstor space of M.
In turn, its holomorphic structure contains all the metric information of the
hyperkahler manifold. In the case of the Legendre transform this structure depends
on a single holomorphic function of (rc+1) variables.

We begin by considering the complex structure of the Riemann sphere S2,
considered as the complex projective line CP1. This is the complex manifold
obtained by patching together two copies U, 0 of the complex plane C with
coordinates ζ, ζrelated by ζ=ζ~1 on UnU^C\{0}. Relative to the coordinates
(α, 6, c) of S2 in R3 the complex coordinate ζ is given by

i(ζ-ζ)\

] (3 70)

Define now the twistor space Z of M4n to be the product manifold M4w x S2

equipped with a complex structure I defined on the tangent space of Z at (m, ζ) as
follows: express the tangent space as a direct sum TmφTζ and define

where Jo is the operation of multiplication by i on the tangent space Tζoϊ ζeS2.
To show that Z actually admits complex coordinates, and is thus a complex

manifold, we need the Newlander-Nirenberg theorem [17].
This theorem says that complex coordinates exist if for each (1,0) form (i.e.,

complex 1-form θ such that W = iθ), the exterior derivative may be written in the
form dθ^θiΛoti (3.72)

for (1,0) forms θ{ and general 1-forms αf. This is a complex version of the Frobenius
integrability condition.

What, then, are the (1,0) forms for the complex structure I? Let φ be a (1,0)
form for I on M, so that Iφ = iφ, and set

(3.73)



Hyperkahler Metrics and Supersymmetry 555

Then,

(3.74)

where we have used Iφ = ίφ. Thus if φί9..., φ2n is a local basis of (1,0) forms for I,
then ψι + ζKψi (1 ̂  i ̂  2ή) and d£ give a basis for the (1,0) forms of Z. Now consider

dθ = d(φ + ζKφ) = Λc' Λ Fe/δjci(φ + CKφ) + dζ A Kφ. (3.75)

Since I is covariantly constant with respect to Vd/6xh

Wδfdχl(φ + ζKφ) = iVδ/dχi(φ + ζKφ), (3.76)

so the first term in (3.75) is of the form dxι A θt for (1,0) forms 0f. The second term is
the product of the (1,0) form dζ and another 1-form, so the whole expression is of
the form (3.72) and the complex structure is integrable. Hence, by the Newlander-
Nirenberg theorem, the twistor space Z has the structure of a complex manifold of
dimension (2w + l). The projection

P.Z-+CP1 (3.77)

is holomorphic and each copy (m, CP1) of the projective line is a holomorphic
section of this projection. We call the sections twistor lines.

From the purely differential geometric point of view, the twistor space is still
the product M x S2, and so the normal bundle to each twistor line (the vector
bundle obtained as the quotient of the tangent vectors to Z over the line by the
tangent vectors to the line) is simply the trivial product bundle S2 x Tm, where Tm is
the 4π-dimensional tangent space at m e M. As a holomorphic vector bundle it is
not trivial, however, and it is important in inverting the construction above to
know what it is.

We take the 4n-dimensional vector space Tm and represent the action of I, J, K
on Tm^R4n^C2n by the complex matrices

ίln 0 \ / 0 1Λ (0 iίλ

o -iij U . oj U o> (3'78)

and so

2ζ

- 1+crv -2c -id-coy

This matrix describes the complex structure on Tm at a point ζ e S2, so that the
complex vectors over ζ consist of the eigenspace of I acting on R4n(g)C
corresponding to the eigenvalue i, and these are vectors of the form:

(3.80)
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In fact, (3.73) tells us this: (V J =(l -f ζK) IV J. Rewriting (3.79) in terms of the

coordinate ζ=ζ~ί

9 the complex vectors may be written as

' — iζw
(3JM)

so the vector bundle is obtained by taking U x C2n and 0 x C2n and patching
together over Un U with the transition matrix iζ ί2n or equivalently by change of
basis ζ 1.

Denote by O(k) the holomorphic line bundle over CP1 with transition function
ζk, then what we have found is that the normal bundle of each twistor line is
holomorphically equivalent to C2n®O(l) [which we write as C2ϊl(l)]. Since we
have a holomorphic projection p: Z-» CP1 we may pull back the bundle O(k) from
CP1 to Z. We shall still denote it by the same symbol.

We are here collecting the essential holomorphic properties of the twistor
space. The next one concerns the interpretation of the covariant constant 2-forms
ωu ω2, ω3. We saw in Sect. 3D that ω+ = ω2 + ίω3 was a holomorphic 2-form of
type (2,0) with respect to the complex structure I. We may locally find a basis {ψi}
of (1,0) forms for I such that

i ω + = £ φtAφn + i. (3.82)
i=ί

Consider now the complex 2-form (suppressing the summation symbol)

±ω = (φi + ζKφύΛ(φH + i + ζKφn + d. (3.83)

From (3.73), ω is a 2-form of type (2,0) for the complex structure 1(0. It is quadratic
inC:

i ω = φiΛ(jί>B + i + C(KφiΛφπ + i + φiΛKφΛ + ί) + C2KφiΛKφΛ + i . (3.84)

Now, evaluating on vectors X, Y,

2(Kφί Λ φn + i + Ψi A Kφn + ί)(X, Y) =

+ Ψi{X) Ψn+i(KY) - Ψi(Y) φn + ;(KX)

= ω+(KX,Y) + ω+(X,KY)

=g(JKX, Y) + ig(K2X, Y)+g(JX,KY) + ig(KX,KY)

= 2g(IX,Y) = 2ω1(X,Y)) (3.85)

where the quaternionic relation on I, J, K has been used. Similarly,

=(ω2 + iω3) (KX, K Y)=g( JKJT, K 7) + ig(K2X, K Y)

= -g{JX, Y) + ίg(KX, Y)= -{ω2-iω3)(X, Y). (3.86)

Thus (3.83) may be written as

C2(ω2-Jω3). (3.87)
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For each ζeCP1, ω, which defines a holomorphic (in fact covariantly constant)
complex symplectic form on the fibers of the projection p.Z^CP1, depends
holomorphically on ζ in a quadratic manner. In global terms, ω is a holomorphic
section of the vector bundle A2T^(2) over Z, where

TF = Keτdp: TZ-+ TCP1 (3.88)

is the tangent bundle along the fibers. The 0(2) twist is a consequence of the
quadratic dependence of ω on ζ.

The final piece of information is the map

τ : M x S 2 - + M x S 2 , (3.89)

defined by the antipodal map on the S2 factor

τ(m,C)=(m,-=V (3.90)

This takes the complex structure I to its conjugate —I. We call this a real structure
(it may be compared with the action of complex conjugation on a complex
manifold given by an equation with real coefficients). All the holomorphic data we
have given (and in particular the twistor lines) are compatible with τ.

The idea of twistor theory is not only to extract holomorphic objects from
differential equations, but also to encode the original equations (in this case for a
hyperkahler metric) in holomorphic form. What we have here extracted in terms of
holomorphic properties of the twistor space is in fact sufficient to reconstruct the
hyperkahler metric. This is expressed by the following theorem:

Theorem 3.3. Let Z2n+1 be a complex manifold such that
(i) Z is a holomorphic fiber bundle p.Z-^CP1 over the projectίve line,

(ii) the bundle admits a family of holomorphic sections each with normal bundle
isomorphic to C 2 M(X)0(1),

(iii) there exists a holomorphic section ω of Λ2T^(2) defining a symplectic
form on each fiber,

(iv) Z has a real structure τ compatible with (i), (ii), and (iii) and inducing the
antipodal map on CP1.
Then the parameter space of real sections is a 4n-dimensional manifold with a natural
hyperkahler metric for which Z is the twistor space.

Proof To prove the theorem we first show that the parameter space of real sections
(we will call them twistor lines) is a smooth manifold of dimension An, secondly
construct a metric on it and thirdly prove that the metric is hyperkahlerian.

Let M denote the parameter space of twistor lines and Pm a line corresponding
to meM. An infinitesimal deformation of the section Pm of p.Z^CP1 can be
thought of as a holomorphic vector field X over Pm pointing along the fibers (see
Fig. 4). This is a holomorphic section of the normal bundle N of Pm in Z. This way
of thinking is made precise by a theorem of Kodaira [18] which asserts that if the
sheaf cohomology group H\CPι\N) vanishes then every holomorphic section of
the normal bundle may be integrated to a deformation of the twistor line, which
makes the parameter space of all holomorphic sections of Z a complex manifold
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CP1

Fig. 4. The twistor space Z, viewed as a fϊbration over CP1, and a deformation of a twistor line
Pm by a holomorphic vector field X, pointing along the fibers

with tangent space at a point m isomorphic to the vector space of global
holomorphic sections of N along Pm. This space can also be written as H°(Pm; N).
In our case by assumption N^C2n®O(l) and the sheaf cohomology group
H^CP^ΛO^C^ΘflHCP^Oίl)) does indeed vanish.

A global section of 0(1) on CP1 is defined by holomorphic functions / on U
and f on U such that (recall ζ = ζ~1)

(3.91)

on the region Un U9 where ζ φ 0. Expanding / and / in power series, this forces /
to be linear and so every holomorphic section of Â  = C2π(l) on Pm is of the form

s(ζ) = (a,beC2n). (3.92)

These sections form a 4n-dimensional complex vector space, so by the Kodaira
theorem the twistor line Pm lies in a 4n-dimensional family. The twistor lines which
are real (i.e. preserved by τ) are parametrized by a real 4n-dimensional
submanifold M whose tangent space at m e M is Tm, where

) = H°(Pm;TF), (3.93)

recalling that TF is the tangent bundle along the fibers (or vertical bundle) of the
fiber bundle p:Z->CP\

We have thus constructed a manifold M and identified its tangent space in
terms of holomorphic data. Now we define the metric g on M.

First note that by assumption, on Pm we have

hence T/ i ^ ~ c2n

and we may rewrite (3.93) naturally as

(3.94)

(3.95)

(3.96)

Now by hypothesis, the form ωeH°(Z; A2T^(2)) defines a non-
degenerate skew form on the 2rc-dimensional space H°(Pm; TF(—1)) as we may
regard it as a 2-form with values in 0(2). Also, the 2-dimensional space
i/°(Pm;0(l))^iί0(CP1;0(l)) has its own natural symplectic structure

<fl! +bιζ,a2 + b2ζ} = a1b2-a2bί. (3.97)
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We therefore define a complex inner product on Tm(x) C using these two symplectic
forms:

g(a + bζ,a + bζ) = 2ω(a,b). (3.98)

Formula (3.98) defines a complex inner product - we need to know the real tangent
vectors, which will be tangential to the space of real lines.

A real structure on a complex vector space V is an operation of complex
conjugation. It is a real linear map t:V->V such that t2 = \ and t(λv) = λt(v).
Closely related to this is the notion of quaternionic structure on V. This is a real
linear map j: F-> V such that

f=~U j(λv) = Ij(Ό). (3.99)

Since ji=—ij, the transformations /, j, ij=k generate an operation of the
quaternions on V.

From this point of view it is easy to see that the tensor product of two complex
vector spaces with quaternionic structures is a vector space with a real structure.
Since the tangent space Tm®C is expressed in (3.96) as the tensor product of two
complex vector spaces, we may define a real structure on Tm®C by taking
quaternionic structures on the spaces H°(Pm; TF(— 1)) and H°(Pm; 0(1)). Consider
first the 2-dimensional space H°(CPl;0(l)). The map; defined by

j(a + bζ) = b-aζ (3.100)

is a quaternionic structure. It is obtained from the unique (modulo +) action of the
holomorphic line bundle 0(1) which covers the action τ\CPγ-^CPι given by

τ(0=-V£
The real structure τ preserves the tangent bundle along the fibers and the

natural decomposition (3.96) and so induces a quaternionic structure j on the
2n-dimensional complex vector space H°(Pm; TF( — 1)). Thus, in the form (3.92) the
real structure is

t(a + bζ)=jb-jaζ, (3.101)

and so a real tangent vector can be written as

X = a-jaζ9 aeH°(Pm;TF(-l)), (3.102)

and then from (3.98) the metric is given by

g(X,X)=-2ω(aJa). (3.103)

The compatibility of ω with τ in the theorem is the statement that this is a positive
definite metric.

Thus far we have obtained the 4n-dimensional manifold M as an abstract
parameter space of real twistor lines, and constructed a metric on M. In fact the
foregoing arguments allow us a more explicit identification of M: namely with an
open set in any one of the fibers of the bundle p.Z^CP1.

We consider a real holomorphic section of the normal bundle of Pm. This is
written as

X = a-(ja)ζ. (3.104)
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Suppose X vanishes at ζ = ζ0, then from (3.103),

g(X, X)=- 2ω(ζo(ja)Ja) = - 2ζoω(jaja) = 0. (3.105)

But g is positive definite, so X must vanish identically. Consequently infinitesimal
deformations of real twistor lines do not vanish anywhere along the line. They
therefore separate points in the fibers of Z, and neighbouring real lines intersect the
fibers of Z in distinct points. Thus the 4w-dimensional manifold M of real lines can
(locally) be identified with any one of the fibers of Z. We shall use this fact to help in
proving the metric defined above is hyperkahlerian, which is the final step in the
proof.

First identify M with the fiber Z o over ζ = 0 in CP1. Then the real tangent
vector X = a-(ja)ζ at ζ = 0 is identified with aeH°{Pm; TF(-1)). Since TF(-1)
^ C2n, the trivial bundle, the section a is determined by its value at any point
ζeCP1 and in particular at ζ = 0. Here TF is just the tangent bundle of the fiber Z o .
The map X-±a is the derivative of the identification of M with Z o .

The fiber Z o is a complex manifold and so defines a complex structure I on M
under the identification, corresponding to multiplying a by i. Hence, considering
the compatibility of I with the metric g, we have

g(DΓ, Y)= -ω(ίa,jb)~ω(bjίa)= -ίω(ajb) + ίω(bja)

= ω(a,jib) + ω(ib,ja)= -g(XJY). (3.106)

Thus the metric g is hermitian with respect to the integrable complex structure I.
Consider next the complex symplectic 2-form ω on the fiber over ζ= — 1. This

defines a form on M

φ.^X, Y) = ω(a+ja,b+jb), (3.107)

and at ζ= + ί

φ + 1(X,Y) = ω{a-ja,b-jb). (3.108)

Thus
Uφ -1 - φ +1) (X, Y) = ω(/a, b) + ω(ajb) = ίg(IX, Y). (3.109)

Now both φt and ψ-x were closed, so the hermitian form g(IX, Y) is closed, and
thus the metric g is Kahler with respect to I.

Repeating with J and K shows the metric to be hyperkahlerian, which
concludes the proof of Theorem 3.3.

This twistorial setting provides a natural context for the hyperkahler quotient
construction of Sect. 3D. We may ask how the twistor spaces Z and Z of a
hyperkahler manifold M and its quotient M by a group G are related. If G is a
group of isometries of M which preserve I, J, and K, then the vector fields generated
by G are actually holomorphic on Z = M x S2 with the complex structure I. If we
suppose that this Lie algebra action extends to an action of the complexified group
Gc, then the quotient construction produces the twistor space Z from Z by taking
the holomorphic symplectic quotient along the fibers of Z, with respect to the
holomorphic symplectic form ω. Note that since ω is a section of Λ2Tp*(2)
and is a symplectic form twisted by 0(2), the holomorphic moment map for the
action of Gc is a holomorphic section of cj*®0(2) over Z.
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(G) The Legendre Transform

We shall next use the twistor space approach to derive the Legendre transform
construction of hyperkahler metrics. We shall see how the contour integral
expression (2.2) arises naturally in this framework. The holomorphic function
which appears in the contour integral arises in the twistor theory approach as the
Hamiltonian function H for a symplectic vector field which we exponentiate to
obtain a symplectic diffeomorphism. This diffeomorphism patches together two
copies of C2n + 1 to get a non-trivial twistor space. The function H depends
holomorphically onn + 1 variables, and in some sense the most general twistor
space for a hyperkahler manifold is obtained by extending the construction to a
holomorphic function of all In +1 variables. The explicit form of the Kahler
potential is, however, more readily obtained in the restricted situation which
follows. What the Legendre transform constructs is the general hyperkahler metric
in dimension An with n commuting Killing fields which preserve I, J, and K.

We begin then with a hyperkahler manifold M4n with a free action of the
additive Lie group Rn on it, preserving the hyperkahler structure. Let Z be the
twistor space of M and assume that the holomorphic action of Rn extends to a free
action of Cn. As discussed above, we then obtain moment maps μ l9 ...,μn which are
holomorphic sections of 0(2) on Z.

Since the group is abelian, each μt is invariant under the group and they define a
holomorphic map

F μ:Z^Y, (3.110)

where Y= Cn(χ) 0(2) is the total space of the vector bundle over CP1 with transition
matrix ζ2 lπ. The map μ is invariant under the action of Cn, and each
^-dimensional fiber is an orbit of the group. In other words, assuming the map μ is
surjective, we have represented Z as a principal bundle over 7 with structure group
the additive group C".

Now Y is obtained by patching together Cn x U and Cnxϋ with transition
function ζ2 ln, so we have holomorphic coordinates (η\ ζ) on Cn x U and (fj\ ζ) on
Cn x 17 related by

if = Γ V , l=ζ-χ (3.111)

on Cn x Unϋ. In these coordinates, the projection μ is just η.
The principal bundle Z over Y can equally be given in terms of transition

functions. We have coordinates (ξ\ η\ ζ) on C2n x U and (ξ\ η\ ζ) on C2n x U related

b y ?=£'+/v,o, tf'=ry, ι=rι (3.112)
on C2n x Unϋ. The functions / ' represent the group action (translation) for the
abelian group Cn. Looking again at the group action it is clear that the vector fields
generated by it are, in these coordinates, the fields d/dξ\ The moment map μt in
these coordinates is η\ and hence the symplectic form along the fibers is given by

ω = 2dξiΛdηi = 2ζ2dξiΛdήί (modulo dQ, (3.113)

where the last equality follows because ω is 0(2)-valued. Hence, from (3.112)

^dηjΛdηι = O, (3.114)
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and we may write

Note that the symplectic transformation (3.112) which patches together the two
copies of C 2 n + 1 is obtained by exponentiating the symplectic vector field

dH d

corresponding to the Hamiltonian H.
To calculate the hyperkahler metric according to the procedure of Theorem 3.3

we need the real structure. Modulo a sign (or a choice of new coordinates) this is
determined by the antipodal map £-• — l/^and the transition relation (3.112). We
obtain

τ(0=-i, τfo')=-p τ(ί')=-?. (3.117)

We now find the twistor lines. Each one when projected by μ to Y= Cn0O(2)
becomes a holomorphic section of this vector bundle. A holomorphic section of
0(2) over CP1 is given by functions / on U and f on U such that

C2T(j)=f(Q whenC + 0. (3.118)

Again (as in Theorem 3.3) comparing coefficients in the power series of each, the
only global sections are quadratic polynomials:

2. (3.119)

Consequently, the twistor lines satisfy

ί / W + fc'C + c'C2, (3.120)

and the real ones from (3.117) can be written

jfW-x'ί-z'ζ2 (3.121)

for xι
 ER,Z1E C. The function (x\ zι)^>R3(g)Rn is actually the moment map for the

group Rn acting on M.
We know now the projections of the twistor lines to Y. They are given by (3.121)

and depend on the 3n parameters (x\zi)eRn x Cn. To find the full 4rc-parameter
family we require a 1-parameter family of lines in Z which project to a fixed line in
Y. From the description of the twistor space Z in terms of the patching function
(3.112) this requires finding a holomorphic function ζι of ζ and a function ξι of ζ
which satisfy

^{η\ζ),...,η\ζH), (3.122)

where ηί(ζ) = zi — xiζ — ziζ2 for fixed x\ z\ Expanding in power series,

? = Σ α ί Γ " and ξ<= £ bι

nζ", (3.123)
n=0 n=0
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where the coefficients are determined by considering the Laurent expansion of

^rfaV-.^Q (3.124)

in positive and negative powers of ζ and assigning to ξι the negative powers and to
ξι the positive powers. The only coefficients that are not uniquely determined are
the ^-coefficients ^ and b^. The 1-dimensional ambiguity in choice (for each ί)
gives the extra degree of freedom to obtain a 4n-dimensional parameter space. The
reality condition (3.117) forces this choice to be one real dimension: more
explicitly, reality gives

α o = - ^ . (3.125)

Thus a constant c can be added to both sides of (3.122) to preserve reality only if

c=-c. (3.126)

Equation (3.122) gives the following relation between αj> and b^:

where C is a contour separating ( = 0 and ζ = oo. We shall use this expression to
find the metric using the prescription of Theorem 3.3 in terms of the complex
structure at ζ = 0.

The real twistor lines intersect the fiber of Z-+CP1 over ζ = 0 at a point with
coordinates [cf. (3.121)]

η\ϋ) = z\ m = ul (3.128)

which we know by construction are holomorphic with respect to the complex
structure I = I(ζ = 0). The function xι in (3.121) is now defined as a function of zj and
uj which we need to determine. This is achieved by (3.127). If we set

Ftf, z\ ?) = - ^ J H(η\ ..., Ά\ 0 %, (3.129)
Iπi c ζ

and put ηί = zi — xiζ — zίζ2 in this expression, then from (3.127)

But

and from (3.125)

hence

This is the equation which

uι = ξι(O]

aι

0=-

dF

determines xι

-ϋϊ

as a function Oftt' and z\

(3.131)

(3.132)

(3.133)
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To find the Kahler form corresponding to I we take the holomorphic form

\ω = dξi/\dηi (3.134)

along the fibers of Z. From (3.117) and (3.113) the reality condition

τ*ω = ώ Γ 2 , (3.135)

where τ* is the usual pull-back operation on forms along the fibers. For

φ = (ω2 + ίω3) + 2ω1ζ — (ω2 — ίω3)ζ2, (3.136)

we find

τ*φ = (ω2 + ίω3)-2ω1ζ-i-(ω2-iω3)ζ-2=-φζ-2. (3.137)

Hence, up to a real constant, we have the Kahler form ω1 determined by the
coefficient of ζ in

= ίdu1 A dzι + ίζ(db[ A dzι - dvi A dxι) + .... (3.138)

Now b\ is the coefficient of ζ in ξ\ζ) and this, by the definition of ξ\ζ) above is the
negative of the corresponding coefficient in dH/dη\ Thus, from (3.129)

b\= — •—7 J — τ - f = j . (3.139)

Thus from (3.134) and (3.138) the Kahler form ωγ is given by

But if

K = F-X^, (3.141)

then

and

) -xιdd
ιjdzW ™ — ' dx>dz* WJ ~ ™ \dx\

—Λ Adz^dvίAdx\ (3.143)
oz )

using (3.133) to write dF/dx^tf + ΰ1. Thus, knowing that (3.140) is of type (1,1),
this gives K as the Kahler potential.
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Remark. The above geometrical description has made some regularity assump-
tions [e.g., the existence of a free C"-action and the description of the correspond-
ing principal bundle over the whole of Y= Cn® 0(2)]. This is an aspect of twistor
theory which is useful in making particular boundary conditions correspond to
different regularity conditions on the holomorphic objects which describe them. In
practice, however, some of the more interesting hyperkahler metrics constructed
by the Legendre transform do not satisfy these conditions. This means that we
must analyze what we have done here purely in terms of differential equations, and
note that the equation

K = F-xi^Ί (3.144)

for a function F(x\ z\ zι) defined by a contour integral

F=^\H(η\...,ηn,ζ)^- (3.145)

2πι c ζ
does indeed provide the Kahler potential for a hyperkahler metric, even if H is not
a single-valued holomorphic function defined on the whole of C" x C\{0}. This
allows the more complicated integrals described in Sect. 2A.

4. Nonlinear σ-Models

In this section we introduce the basics of nonlinear σ-models and discuss duality
and gauging of isometries. The constructions of hyperkahler manifolds follow
directly from the supersymmetric generalization of these concepts.

(A) Basics

Fields φ in a field theory are sections of a bundle E with fiber F over a base space M.
We will call the fiber F the target space for the maps φ. In familiar examples M is
the space-time manifold, and, for scalar field theory F is a linear space, for spinor
field theory E is a spin bundle, and for Yang-Mills theory with gauge group G, E is
an affϊne bundle whose sections are connections on a principal G-bundle over M.
In general, the base space has a metric and the target space is also assumed to have
some geometrical properties. In our case, the base space will be either flat
Minkowski or Euclidean space or superspace (see next section), while the target
space will be a Riemannian space or a direct product of a Riemannian space and
some other space.

The dynamics of the fields φ are determined by an action functional S

S = j L(φ(x)), xeM, φ(x)eF. (4.1)
M

The Lagrangian density L is a function of φ(x) and its derivatives. For the scalar
field theories we consider, the action is (here the bundle E is trivial, i.e., a direct
product MxF) [19]

>*daφ*9 da=—-^, a = l,...,D, (4.2)
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where M is D-dimensional Euclidean or Minkowski space with (Cartesian)
coordinates xa and g^ is the metric on the target space F with coordinates φ\

For historical reasons, theories such as (4.2) are called nonlinear σ-models. F is
often taken to be a coset space. If g is the flat metric, then the theory is free.

Field equations follow from extremizing the action functional with respect to φ.
For the action (4.2):

dadaφ' + Γ^daφJdaφ* = O, (4.3)

where Γ^d is the Levi-Civita (Christoffel) connection on F. Mathematicians call φ's
that satisfy (4.3) harmonic maps because they satisfy a generalized Laplace
equation, and physicists think of them as being on-shell2 fields because they satisfy
a field equation. For a free theory, in suitable coordinates φι on F, the field
equations (4.3) are linear and the general solution is a superposition of plane
waves.

In general, one considers action functionals that are invariant (modulo
boundary terms) under some symmetries. Continuous symmetries are most often
given as infinitesimal transformations of the fields. For example, translations in a
flat space M can be written as

δφ=-ξadaφ, (4.4)

where ξa is a constant parameter of the transformation. Under this transformation
the Lagrangian varies as a total derivative:

δS=-\ξadaL. (4.5)
M

Such terms are usually thrown away by assuming that derivatives of fields fall off
sufficiently fast at infinity. This is a space-time symmetry, i.e., a symmetry of the
base space M. An internal symmetry acts on φ at each point of M, i.e., it acts
without space-time derivative. For example, a (7(l)-algebra acts on a complex field
φ as:

δφ = iλφ. (4.6)

If the transformation parameters, e.g., ξa and A, are constants over M (and hence of
course, over F) then the transformations are called global or rigid. This use of these
words must not be confused with their mathematical usage. The group of
transformations is called local if the parameters are arbitrary functions over M,
X = A(χ) (e. g., gauge transformations of Yang-Mills fields). Sometimes, it is possible
to modify a theory and promote a global symmetry to a local one; the prescription
for doing this is called gauging the symmetry, and is discussed extensively below.

Given two or more infinitesimal symmetry transformations of φ, the commu-
tator [<5ί9 δ2~\φ = δ 1(δ2φ) — δ2(δγφ) generates another symmetry. The algebra of
symmetry transformations may be finite or infinite dimensional. In many cases of
interest it is finite dimensional, e.g. (4.4) and (4.6) above. Even if it is infinite
dimensional when acting on arbitrary fields φ, it may happen that it acts as a finite

2 Note that, in scattering theory, on-shell is used for a field satisfying a free field equation even
when the theory is nonlinear



Hyperkahler Metrics and Supersymmetry 567

dimensional algebra on fields that are solutions to the field equations (4.3), i.e., on
harmonic maps. In this case the transformations are said to form an on-shell
realization of the finite algebra. The distinction between on-shell and off-shell
realizations of an algebra is important in supersymmetry [20]. Whereas for on-
shell realizations the transformations δφ depend on the detailed form of the action
functional, for off-shell realizations the transformation laws are general, and
typically leave families of actions invariant.

We now specialize the discussion of symmetries to the nonlinear σ-models in
(4.2). The space-time symmetries of these models are the isometries of the flat
D-dimensional Euclidean or Minkowski space M, i.e., the Poincare group. The
internal symmetries are the isometries of the target space F. These are global
symmetries generated by the Killing vectors of F:

δφ' = XAkAφ' = XAkA, (4.7)

where XA are constant parameters and kA = kAd satisfy Killing's Eq. (1.5) and
generate the Lie algebra of the isometry group (1.7).

(B) Duality

We now discuss duality transformations, for refs. see [21, 22]. The Legendre
transform construction of hyperkahler metrics of Sect. 6 is the naive supersym-
metric extension of the procedure described in this subsection. If the action (4.2)
has a continuous internal symmetry, i.e., the target space F has a Killing vector
field, then we can perform a duality transformation of the action. This replaces a
scalar field by a gauge (D-2)-form and interchanges the role of the field equations
and Bianchi identities. As this affects the field equations, it may change an off-shell
realization into an on-shell one, or vice versa.

When there is a Killing vector field, we can choose (local) coordinates on F such
that the Killing vector is k = d/dφ°. The components of the metric g are then
independent of φ°, and hence the action depends on φ° only through daφ°. We can
then rewrite the action in first order3 form by substituting for daφ° a new field Va

and introducing a Lagrange multiplier Tab:

S= -iίdDx(g00V
aVa + 2g0,V

adaφ^g,.daφ%φ^ TabdaVb), (4.8)

where i,j φ0 and Tab = - Tba. Extremizing (4.8) with respect to Tab gives d[aVb] = 0
and hence, locally, Va = daφ°. Substituting this solution into (4.8) gives (4.2) back.
Extremizing (4.8) with respect to Va we find Va as a function of Tab and φL.

Va=- (goo)'1 ( R 7 ? + go,daφ'). (4.9)

Substituting (4.9) into the first order action (4.8) gives (modulo boundary terms)

+ (g. ,-(gooΓ 1gOίgoβdaψ%φ^. (4.10)

3 It is called first order because the term (daφ
0)2, which is second order in derivatives, has been

replaced by terms at most first order in derivatives
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Observe that the procedure we have followed is precisely a Legendre transfor-
mation of the Lagrangian in (4.2) with respect to daφ°. The scalar field φ° has now
been completely removed from the action and replaced by the antisymmetric
tensor Tab, which enters (4.10) through dbT

ab. This can be rewritten as a field
strength, i.e., as the exterior derivative of a tensor, by introducing the Hodge dual
*T:

2)\ε

*T is a (D — 2)-form, which, via the Legendre transformation, is said to be dual to
the scalar field φ°. The field equation that follows from extremizing the original
action (4.2) with respect to φ° is

δa(gooVa(φ°) + goβ
aφ') = 0, Va(φ°)^daφ0, (4.12)

whereas the field equation that follows from extremizing the dual action (4.10) with
respect to Tab is

d[aVb](T) = 0 (4.13)

with Va(T) given by (4.9). For Va(φ°) as in (4.12), (4.13) is a Bianchi identity,
whereas for Va(T) as in (4.9), (4.12) is a Bianchi identity. Thus the duality
transformation has interchanged the field equation and the Bianchi identity.

If the target space F has several commuting Killing vector fields then each of the
corresponding scalar fields can be exchanged for a (D — 2)-form by a Legendre
transformation.

(C) Gauging

We now discuss local internal symmetries and gauging. The quotient construction
of hyperkahler metrics of Sect. 6 is the naive supersymmetric extension of the
procedure described in this subsection. The basic idea is to promote a global
symmetry of the action to a local symmetry by introducing a connection for the
symmetry group. Explicitly, the action (4.2) is made invariant under the
transformations (4.7) with XΛ = XA(x) by replacing ordinary derivatives with
covariant derivatives

*B9 (4.14)

where AB transforms as

δAB

a = -daX
B(x) + cCD

BAc

aX
D(x) (4.15)

which guarantees the invariance of the action. The fields AB are gauge connections
or Yang-Mills potentials and are components of Lie-algebra valued 1-forms. The
substitution (4.14) is known as minimal coupling. The space-time dependent gauge
transformation parameters XA(x) can be used to eliminate some scalar fields φ*
from the action [cf. (4.7)]. The remaining scalar fields parametrize the space of
G-orbits on F. We do not include a kinetic term ̂ FabF

ab, where Fab is the curvature
(field strength) of the connection A.
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We can reduce the gauged model to a nonlinear σ-model with target space Fo

(the space of G-orbits on F) by choosing a special connection that is a function of
the scalar fields and substituting this connection back into the action. This
connection is obtained by extremizing the gauged action with respect to A%:

The connection A% = φ%4f) is the pullback to spacetime of the connection
discussed in (3.4). Substituting (4.16) into the gauged action gives the action for the
nonlinear σ-model with target space Fo:

S= -ϊμDx(g^-g^g^Ίk*BH
AB)daφ%φJ. (4.17)

(D) CP(1)

To illustrate the previous discussion we consider the CP(l)-model. This model
exhibits two features characteristic of supersymmetric constructions: Nonlinear
constraints are imposed by Lagrange multipliers and the group action is extended
to its complexifϊcation.

We start with the target space S3: We use complex coordinates zp, p = ί,2,
constrained by

Σ\zp\2 = \z\2 = l. (4.18)
P

The Lagrangian Lz is
Lz=-\daz\2. (4.19)

The constraint (4.18) induces the metric on S3 [cf. (4.2)]. The Lagrangian is
invariant under an obvious global 1/(2) acting linearly on zp and hence, through
(4.18), nonlinearly on the coordinates of S3. The full isometry group of S3 is SO (4),
but 1/(2) is the maximal subgroup that acts analytically on zp. To construct the
CP(l)-model we gauge the diagonal (7(l)-subgroup in U(2). Under this C/(l) the
coordinates transform as

δzp = iλzp, δzp=-iλzp, λ real, (4.20)

and using (4.14) the gauged Lagrangian is

U z\2 = LZ + ίAa(fpdazp) - AaAa, (4.21)

where we have used (4.18) and zdz = zdz — zdz. Extremizing the action we find the
gauge connection

Aa=
l-{zpdaz

p). (4.22)

Substituting (4.22) into Lz we find

L0 = Lz-i(fpdaz
p)2. (4.23)

This Lagrangian is invariant under local £/(l)-transformations (4.20), which can be
used, e.g., to make z1 real. The constraint (4.18) induces the metric on the orbit
space CP(1).
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The constraint (4.18) is awkward as it makes the action of the 1/(2) on S3

nonlinear. It is useful to relax the constraint and impose it through a Lagrange
multiplier Y in the Lagrangian Lo:

L 0 ^ L 0 + Y( |z | 2 -l). (4.24)

As the theory is now described in terms of unconstrained complex fields zp it is
natural to extend the [7(1 ̂ transformation (4.20) to the complexified
transformations:

δzp = iAzp, δzp=- iΆzp, A complex. (4.25)

To make the Lagrangian invariant under (4.25) we introduce a new real field v with
transformation

δυ=l-{Λ-Λ). (4.26)

The fields e~vzi and e~vzl then transform under the complexified U{\) with the real
parameter λ = RtΛ [cf. (4.20)]. Substituting z ^ e ' V and zi-^e~vzi into the
Lagrangian (4.24) we find

Lv=-\da(e-vz)\2-ie-4\zdz)2+Ye-2v(\z\2-e2v). (4.27)

In this form, the constraint imposed by the Lagrange multiplier can be solved for v
in a manifestly (7(2)-covariant way: e2v = \z\2. The Lagrangian (4.27) is a function of
the complex variables z1, z2 and is invariant under local complex rescalings [cf.
(4.25)]. It thus describes CP{\). Substituting for v, the Lagrangian becomes

1 / zpzq\
j — i_ I xpq _ \ fia7pf) 7q (A ?RΊ

\z\2 \ \z\2J '
which gives the standard metric on CP(1) in the gauge z1 = 1.

5. Supersymmetry

In this section we attempt to introduce supersymmetry to mathematicians in a self-
contained and, hopefully, pedagogical way. For reviews of supersymmetry see, e.g.,
[23, 24]. In particular we present the supersymmetric versions of the nonlinear
σ-models of Sect. 4 and material needed for their gauging. This section should
make it possible to understand the constructions of the hyperkahler manifolds in
Sect. 6.

(A) Introduction

A supersymmetry algebra is a graded version of the Poincare algebra. It appends to
the even generators of space-time motions P, J odd generators g, which transform
as spinors of the Lorentz group (generated by J). The simple supersymmetry
algebra in D dimensions has one odd charge; the N-extended algebra has N such
charges. The structure of the algebra is

[P,P] = 0, [ J , J ] ~ J , [P,J1~P,

[ Λ β ] β [ P β ] 0 { β β } Λ
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where [ , ] is the usual antisymmetric Lie-bracket and { , } is a symmetric (super)
Lie-bracket. The interesting feature is the creature Q: It generates an internal
symmetry, cf. (4.6), but it transforms under rotations J, and hence Q mixes different
spins, i.e., different representations of the Lorentz group. Supersymmetry therefore
relates wave operators (and their spectra) for different spins, e.g., Laplace and
Dirac operators. The even part (i.e., P, J) of the algebra in (5.1) is an ordinary Lie-
algebra: The isometry group for flat space. Other superalgebras, based on larger
even algebras, have been studied. These can all be viewed as subalgebras of the
graded version of the conformal algebra, and include supersymmetry on a
hyperboloid and flat space-time supersymmetry with central extensions.

Here we focus on Poincare supersymmetry in three space-time dimensions.
The detailed superalgebra is given below. To find off-shell (cf. Sect. 4) represen-
tations of supersymmetry we introduce superspace as the coset space (super-
Poincare group)/(Lorentz group). This has coordinates x, θ, where x are even and θ
odd, thus reflecting the properties of the generators P and Q. The group action on
the coset space gives a representation of the generators of the superalgebra as
differential operators. This realizes supersymmetry transformations as rotations
and translations in superspace. Representations of supersymmetry are obtained as
fields over superspace, superfίelds. We assume analyticity in θ and can define a
superfϊeld by its Taylor expansion in θ. This has only a finite number of terms as θ is
nilpotent. The x-dependent coefficients in the ̂ -expansion are called components of
the superfield. Each one of them is a representation of the Lorentz group while the
entire set of components (the multiplet) is a representation of supersymmetry. This
is an off-shell representation, i.e., the component fields do not have to fulfill field
equations (cf. Sect. 4).

Superfields are in general reducible representations of supersymmetry. How-
ever, irreducible representations can be constructed by imposing constraints on
the superfields using a spinorial derivative D that anticommutes with the generator

Q
After discussing various N = 1,2 superfields as fields over N = 1,2 superspace

respectively, we describe N = 2 supersymmetry in N = 1 superspace. This amounts
to expanding the N = 2 superfields in half of the θ's with coefficients that are
functions of the remaining 0's (and x). Each one of these coefficients is a
representation of N = 1 supersymmetry while the entire set of coefficients is a
representation oϊN = 2 supersymmetry (cf., the components of a superfield above).
This technique has several advantages; one is that N = 2 superfields restrict one to
holomorphic coordinates on the target manifold of nonlinear σ-models, whereas
N=ί superfields allow arbitrary coordinates. For N = 4 supersymmetry a finite
dimensional description of one of the representations needed for the nonlinear
σ-model is not known in JV = 4 superspace (see footnote 4 in Sect. 5M below), and
we use N = l,2 superspace.

We introduce action functional in superspace [cf. (4.1)] that are invariant (up
to a boundary term) under supersymmetry transformations and give the action
functional for the iV = l supersymmetric nonlinear σ-model in superspace.
Expanding in components we find that this is an extension of (4.2). The target
manifold is a general Riemannian manifold. If the action functional is required to
be invariant under additional supersymmetries, it is found that it is N = 2
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supersymmetric if and only if the target manifold is Kahler and N = 4 supersym-
metric if and only if the target manifold is hyperkahler.

(B) Preliminaries

Our notation follows essentially that of [24]. In three dimensional space-time
(with signature — h + ) the Lorentz group is SL(2,R) and the corresponding
fundamental representation acts on real (Majorana) two-component spinors
ψ(X = (xp+

ίψ-y We use spinor notation for all Lorentz representations, denoting
spinor indices by Greek letters. Thus vectors (the three-dimensional represen-
tation) are described by symmetric second-rank spinors Va<r+Vaβ = (V++, F + ~ ,
V~ ~) or, equivalently, traceless second rank spinors Vj*. All our odd rank spinors
are antίcommuting (Grassman).

Spinor indices are raised and lowered by the second-rank antisymmetric
symbol Caβ, which also defines the spinor inner product:

Note that we (anti)symmetrize without a combinatorial factor. We often use the
identity

iΛ,= -M'B7, (5.3)

which follows from (5.2). We use Caβ (instead of the real εΛβ) to simplify the rules for
hermitian conjugation. In particular, it makes ψaψa hermitian (recall ψa and ψa

anticommute). Note however that whereas ψ* is real, ψa is imaginary.

(C) Superalgebras and Superspace

The iV-extended superalgebra in three dimensions is

r<«j

(5.4)

2

{&ej}=2ivy.
Here, ij = l,...,iV label the odd generators; PΛβ = Pβa<-+Pa are the generators of
translations and J<Xβ = Jβa^>Ja

 = i;εabcJbc generate rotations.
A convenient way of obtaining off-shell representations of supersymmetry is to

use superspace. Ordinary space-time can be defined as the coset space (Poincare
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group)/(Lorentz group). Similarly, superspace can be defined as (super-Poincare
group)/(Lorentz group). We parametrize this coset space as

h(x,θ) = e«x"βp«e+Θί"Q«K (5.5)

The parameters x and θ are the coordinates of superspace. Reflecting the grading of
the generators P and Q, x takes its values in the even part of a Grassman algebra
and θ in the odd part:

[x, x] = [x, 0] = {θ, θ} = {θ, Q} = [0, P] = [x, P] = 0. (5.6)

We find a representation R of a super-Poincare group element g by letting it act on
superspace as

h(Rx,RΘ)ΞΞg-1h(x,θ)mod(Lorentz group). (5.7)
Considering

respectively, we find, using the Baker-Hausdorff formula e

A

e

B = e

A+B+iiA>BΊ when
\_A,B] commutes with A and B:

Supersymmetry transformations are thus realized as rotations and translations in
superspace.

(D) Superfields and Spinor Derivatives

We define superfields as a generalization of the fields defined in Sect. 4. Thus a
scalar superfield Φ(x, θ) is a map from superspace into the even part of a Grassman
algebra; a spinor superfield Ψa(x, θ) is a space-time spinor with values in the odd
part of a Grassman algebra. The 0-dependence in a superfield is formal: We
assume analyticity in θ, which, because of the nilpotency of θ, implies that a
superfield is a polynomial in θ. We can find representations of the supersymmetry
algebra acting on superfields Φ by defining these fields to transform as coordinate
scalars under (5.9):

gΦ(R(g)x,R(g)θ) = Φ(x,θ) (5.10)

or, infinitesimally,

δΦ=- i[ξaβPaβ + cψί + ε^Ql Φ]. (5.11)

From (5.9) we find the representation of the generators as differential operators:

r(P) = idaβ,

r(J)=-~(xy

iadβ)γ + θ\A)> ( 5 1 2 )
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Here dι

a is the anticommuting partial β-derivative: dι

ιχθ
jβ = διiδc

β. As everything is
polynomial in θ this algebraic definition is adequate. In general, when acting on
spinor superfields, etc., we must add a matrix representation of the Lorentz group
to r(J), e.g.,

r(J)Ψy= - - [xf.a^ + βj.SjJ Ψy- -Cy{ΛΨβ). (5.13)

Given a superfield that transforms covariantly, i.e., according to (5.10-13), we
want to define differentiation that preserves the transformation properties. In (flat)
space-time daβ is such a derivative; it transforms covariantly in (flat) superspace as
well. However, the spinorial derivatives d\ do not transform covariantly [they do
not anticommute with r(β)]. The r(Q) was induced by left multiplication (5.7); right
multiplication gives the spinorial derivative Ό\

D^dί + ίθVd^, (5.14)

which anticommutes with r(Q). The D's obey an algebra isomorphic to the algebra
of the β's:

{DlDJ} 2ίdaβδ
ii. (5.15)

Superfields are in general reducible representations of supersymmetry. A systema-
tic construction of the irreducible representations is possible using the spinor
derivatives D\. Here we give a heuristic discussion of the simplest iV = l,2
superfields in three dimensions. When discussing N = 4 supersymmetry we do not
use N = 4 superspace, but instead we use representations in terms of N = l,2
superfields (see below).

(E) N=ί Scalar Superfield

The iV= 1 real scalar superfield Φ is an irreducible representation of JV = 1
supersymmetry. To make contact with formulations in ordinary space-time we
need to relate superfields to ordinary space-time fields. As mentioned above, a
superfield is polynomial in θ. The space-time dependent coefficients in this
expansion are the ordinary fields. Instead of doing the Taylor expansion of a
superfield using the partial derivative da, we use the spinorial derivative Da. We
define the components of Φ as ^-independent parts of Φ and of spinor derivatives of

A = Φ\9 ψa = DaΦ\, F = ±D2Φ\, (5.16)

here | denotes the θ-independent part. Higher order spinor derivatives lead only to
space-time derivatives of the components in (5.16) because, for JV=1,

{DvDβ}=2idaβ9 (5.17)

which implies

DaDβ = idaβ-±CaβD
2, D*DβDΛ = 0,

D2Da=-DaD
2 = 2idΛβD

β. (5.18)

The superfield Φ contains a multίplet of component fields: A is a real scalar (in
ordinary space-time), ψa is a spinor and F is another real scalar. We will see later
that A and F play very different roles.
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(F) N = ί Gauge Superfield

The other N=ί superfield we use is a real gauge spinor potential Γα. This contains a
component vector gauge potential (see below) and hence enters both in the
Legendre construction (a vector is dual to a scalar in three dimensions) and in the
quotient construction. In the abelίan case the gauge transformation is

<5Γα=-zΌαX, (5.19)

where X is a real scalar superfield [cf. (5.16)]. From Γa we can construct a vector
potential

i

r
Γΰcβ=--D(aΓβ) (5.20)

transforming as

δΓ^-iδ^X (5.21)

and a divergence free gauge invariant spinor field strength

Fa = iDfiDΛΓβ9 D«Fa = 0 (5.22)

[invariance follows from (5.18)]. The usual vector field strength Faβ<->Fa = εabcdbΓc

can be found from Fα,

Faβ = iD{aFβ)~dlΓβ)y. (5.23)

The components can be obtained by differentiation and projection onto the
^-independent sector as for Φ. The gauge invariant components are obtained from

K = FΛ\, f*β = iDiaFp)\ = Faβ\. (5.24)

Because DαFα = 0, there is no independent D2F\ component (D 2 F α |= β

The potential Γα has a natural interpretation as the spinor component of a
connection super 1-form Γ,

Γ = ΓJΘ« + Γaβdx«e, (5.25)

[Γφ Γα are superfields; the notion of components used here must not be confused
with the components of a superfield discussed above, cf. (5.16).] The connection
can be used to define a gauge covariant derivative VA = (Va, Vaβ)

β. (5.26)

It satisfies the algebra

{Va,Vβ} = 2iVaβ, (5.27)

cf. (5.17), and

ίKβ, F,J = UCaiyFδ)β + Cβ0Fy)Λ), (5.28)

where the curvatures FΛ, Fxβ are the spinor and vector field strengths defined in
(5.22, 23). Note that (5.27) expresses the vector connection Γxβ in terms of the
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spinor connection Γα, cf. (5.20), and that (5.28) follows from (5.27) via the super
Bianchi identity,

0 = ( - r [LVA, VB}, F c H ί - r Π J * Vcl VA}+{-)BCίWc, VA}, VB}, (5.29)

where the super bracket is

VVA,VB}^VAVB-{-)ABVBVA, (5.30)

and {-)AB= - 1 if A = OL9 B = β and {-)ΛB= +1 otherwise.
The nonabelian case is defined by (5.26-28) where the connections and

curvatures are Lie-algebra valued.

(G) N=ί Supersymmetry Transformations

From the transformations (5.11) we find the supersymmetry transformations of the
component fields. For a scalar superfield we find

Q p A , (5.31)

δQF=-ieftdΛ

βψa.

The transformation of F has the form of a Dirac-operator acting on ψa. This is a
general feature of supersymmetry: The highest component (in the ^-expansion)
always transforms as a Dirac-operator acting on the second highest component.

The supersymmetry transformations relate the wave operators (and their
spectra) for the component fields in a superfield. For example, for a scalar
superfield the free (i.e., linear) field equations are:

F = mA, id«βψ
β=-mψa, \UA=mF, Π=daβdaβ. (5.32)

These equations rotate into each other under supersymmetry. This holds also
when nonlinear terms are present. Note that the F-field equation is algebraic. F is
an auxiliary field that is needed for the closure of the algebra [off-shell
representation, cf. discussion following (4.6)]: When it is eliminated through its
field equation, the algebra closes on the remaining fields only if they satisfy their
field equations (on-shell representation) (actually, it is sufficient that the spinor
field equation is satisfied). An important feature of superspace is that superfields
provide auxiliary fields for off-shell closure of the algebra.

(H) N = 2 Spinor Derivatives and Superfields

For N = 2 the situation is considerably more involved: A scalar superfield
decomposes into three irreducible projections. We define complex spinor
derivatives

, D^φl-iD2

a), (5.33)

with the algebra

{DmDβ} = idaβ, {Dcc,Dβ} = {Da,Dβ}=0, (5.34)
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which implies

, D«Da = D°Da, (D«DΛ)
2= -\IT&DflΛ. (5.35)

For a scalar superfield we can impose a covariant constraint

DaΦ = 0, (5.36)

which implies, because D3 = 0,
Φ = D2Ψ (5.37)

for arbitrary Ψ. Φ is called a chiral superfield and is irreducible. (Φ must be
complex, otherwise DΦ = DΦ = 0 => {Dα, Dβ} Φ = idaβΦ = 0.) Another characteriza-
tion of a chiral superfield Φ is [as follows from (5.34-36)]

(5.38)

The other irreducible representation we use is the real linear superfield G which
obeys

D2G = D2G = 0, (5.39)

or, equivalently
D*D2DaG=-ΠG9 (5.40)

which implies
G = DaDaV (5.41)

for arbitrary real V. The superfields Φ, Φ (DαΦ = 0) and G are the complete
decomposition into irreducible parts of scalar superfields because of (5.38, 40) and

\D2D2 - DaD2Da + \D2D2 = • . (5.42)

(I) N = 2 Components and Supersymmetry Transformations

We define the components of a chiral superfield Φ as the θ-independent parts of Φ
and its complex spinor derivatives:

A = Φ\, ψa = DaΦ\, F = \D2Φ\. (5.43)

DaΦ = 0 because Φ is chiral and from (5.34,35) we see that all mixed D,D-
components of Φ are expressible as spacetime derivatives of the components in
(5.43). The chiral superfield Φ contains a multiplet of component fields: A is a
complex scalar, \pa is a complex spinor and F is another complex scalar. Note that
an N = 2 chiral superfield is just a complex version of an N = 1 real superfield [cf.
(5.16)], which is why the chiral superfields appear in N = 2 nonlinear σ-models and
why these have a natural complex structure. A real scalar superfield has the
components

C=V\, X« = iDaV\, χa=-iDaV\,

M = iD2V\, M = ±D2V\, Aaβ = H

A = D«DaV\, λa=
l-D2DaV\, λa=
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We emphasize that V contains a vector Aaβ and that it is a reducible superfield [see
(5.42)]. For the particular case when V=G is linear we find

M = 0, d^Aaβ = 0, λa=-idaβχ
p, £ = - i D C , (5.45)

leaving

C = G\, χα = LDαG|, ^ = i [D(flP D^] G|, 4 = D«DαG| (5.46)

as the components in G. From the transformation (5.11) we find the N = 2
supersymmetry transformations of the component fields. For example, the
components of the chiral superfield transform as

δQΛ = - εaψa, δQψa = saF - iεβdaβA, δQF=- ίεβda

βψa. (5.47)

(J) N = 2 Gauge Fields

We now consider N = 2 gauge fields. We expect real scalar superfields to enter, as
they contain vector components Aaβ (5.44). As for the nonabelian N = 1 gauge
spinor we define the JV = 2 gauge multiplet by giving the algebra of its covariant
derivatives:

{K^β} = {K,Vβ} = 0, (5.48)

{Va,Vβ} = ίVaβ + CaβF. (5.49)

Equation (5.49) defines the vector connection in terms of the spinor connection [cf.,
the N=l case (5.27)]. F is the fundamental field strength; in the abelian case the
Bianchi identities imply that it is linear (5.39-41, 46) (in the nonabelian case it is
covariantly linear Γ α F α F= FαFαF = 0). The Bianchi identities give the remaining
graded commutators where the field strengths are co variant derivatives of F, e.g.,
F β = FβF[cf.(5.28)].

Equation (5.48) is a nontrivial constraint on the spinor connection; it has no
analog in the N=ί case. It is the integrability condition for the existence of
covariantly chiral superfields

ΓαΦ = 0=>{Fβ,F>}Φ = 0. (5.50)

A particular solution to the constraint (5.48) is

Vx = e~vDae
v, Va=Dx, (5.51)

where V=VAiTA is a hermitian Lie-algebra valued scalar superfield. The most
general solution is found from (5.51) by an arbitrary complexified gauge
transformation

Va = e-we-yDxe
vew, V^e^Ώ/". (5.52)

The solution (5.51) is called chiral representation and is not hermitian; (5.52)
allows for hermitian solutions (choose evew = e~w). Clearly, we can also use
(5.52) to find an antichiral representation (choose W= — V)

Vx = Da, Va = evDxe~v. (5.53)
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(K) N = 2 Gauge Transformations

We now consider the transformations of chiral superfields. The most natural local
(i.e., superspace dependent, see Sect. 4A) representation of a Lie-group on chiral
superfields Φ is with chiral group elements eίΛ,

g(Λ)Φ = eiΛΦ, A = iAATAi (5.54)

DaΛ = 0, (5.55)

where TA is the appropriate matrix representation of the generators acting on the
vector space of Φ's. Recall that, because A is chiral and non-constant, it must be
complex Λ + A. The antichiral superfield Φ transforms with A

g(A)Φ = Φe-iΆ, A = iAATA, DaA = 0. (5.56)

This means that the group naturally acts on chiral superfields through its
complexifίcatίon. The covariant derivative can be chosen to transform covariantly
with respect to A or A but not with respect to both. The Λ-covariant
transformation follows from (5.54)

g(Λ)VA = eiΛVΛe-iΛ. (5.57)

Because A is chiral, this is compatible with the chiral representation (5.51) if we let
V transform as T7 .-A Ί, .A

{ A ) v = elAeve~lA. (5.58)

The yl-covariant transformations which follow from (5.56) are compatible with the
antichiral representation (5.53) with V transforming as in (5.58).

(L) N = 1 Form of N = 2 Supersymmetry

We formulate N = 2 supersymmetry in terms of JV=1 superfields because N = 2
superfields restrict one to holomorphic coordinates on the target space for
nonlinear σ-models, whereas JV = 1 superfields allow arbitrary coordinates.
Expressing N = 2 superfields in terms of JV=1 superfields is analogous to
expressing superfields in terms of components [cf. (5.16)]. This amounts to
explicitly expanding an N = 2 superfield in terms of half of the 0's with coefficients
that depend on the rest of the 0's (and x), and hence are JV = 1 superfields.
Technically, we split the N = 2 spinorial derivative Dα into an N = 1 spinorial
derivative Da and an orthogonal operator βα,

Da = Da + Da = D\, (5.59)

Qa = iφa — Da) = Dl. (5.60)

Z)α is the usual N = ί derivative obeying the algebra (5.17). In N = ί superspace,
only one supersymmetry is manifest; the other supersymmetry mixes different
superfields [this is analogous to component transformations (5.31)]. The latter
supersymmetry is generated by Q. We also use Q to define the JV=1 superfield
components of an N = 2 superfield.

The discussion above is a sketch of the decomposition oϊN = 2 superfields into
N = 1 superfields. Here we give the results for the N = 2 chiral and gauge multiplets,
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for details see [25]. A model with pN = 2 chiral superfields decomposes into 2p real
scalar N = 1 superfields Φ* (the real and imaginary parts). In arbitrary coordinates,
the second supersymmetry is

δηΦ^{η«DΆφJ%. (5.61)

The supersymmetry algebra (5.4) requires that I is an integrable complex structure.
The N = 2 (nonabelian) gauge multiplet [cf. (5.48, 49, 51, 58)] decomposes into an
JV = 1 gauge multiplet ΓΛTA [cf. (5.26)] and a real Lie algebra valued JV = 1 scalar
superfϊeld Φ = ΦΛTA with supersymmetry transformations

δΦA = η«FA, δΓA = ηaΦ
A, (5.62)

where FΛ is the field strength in (5.28) and ΦΛ are coordinates chosen to transform
linearly under the gauge transformations (5.54).

(M) N = 4 Supersymmetry

We now consider N = 4 supersymmetry. The off-shell N = 4 superspace description
of N = 4 gauge multiplets is known; however, such a description is not known for
the N = 4 scalar multiplet needed to describe N = 4 nonlinear σ-models4. We
therefore describe N = 4 superfields in terms of JV = 1,2 superfields. This also
allows a formulation in terms of the Kahler potential.

A model with kN = 4 scalar multiplets can be described by 4/c real scalar N = 1
superfields Φ\ The three nonmanifest supersymmetries are

δnΦ
ι - Vjφβ* + •fySA.Φ'" + %Ά\P& (5.63)

The supersymmetry algebra (5.4) requires that I, J, K are three integrable complex
structures that generate the algebra of the quaternions. The N = 2 description
selects one complex structure, e.g. I, and puts it in canonical form. We can then
describe a model with k N = 4 scalar multiplets in terms of 2k chiral N = 2
superfields Φp, where p runs over holomorphic indices only. The two nonmanifest
supersymmetries are (η complex) [3]

η (5.64)

where η is a complex constant chiral superfield parameter satisfying

Daη = D2η = daη = 0, (5.65)

and XP(Φ, Φ) is (locally) a vector field from which, as a consequence of the
supersymmetry algebra (5.4), the integrable complex structures J and K are
constructed as follows:

) ( 5 6 6 )

4 This was the case at the time when these lines were written. In the intervening years an interesting
off-shell formulation (but with an infinite number of components) of N = 4 scalar multiplets has
been developed [26]. Unfortunately, the problem of extracting the geometry (i.e., the metric) of the
σ-model in this formulation has not been solved
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The N = 4 gauge multiplet is described by an JV = 2 gauge superfield V=VATA
Aand a Lie algebra valued N — 2 chiral superfield Φ = ΦATA. The two nonmanifest

supersymmetries are [27, 5]

δΦA= -(VaFA)Daη, δev = ήevΦ + ηΦev, (5.67)

where FA is the field strength (5.49) and η is as above. Whereas the transformation
(5.67) generate an off-shell algebra, the algebra of (5.64-66) closes only on fields
satisfying the field equations (see below).

(N) Actions in Superspace

We now turn to action functionals in superspace. Supersymmetrically invariant
actions in N = 1 superspace can be written as

S=jd3xD2L(Φ). (5.68)

When L is a function of Φ and its spinorial (D) and spacetime derivatives, it
transforms as a superfield, and, in particular, its highest component, D2L\,
transforms into a spacetime divergence [see the discussion following (5.31)].
Discarding this boundary term, the action functional is invariant under
supersymmetry.

The action for supersymmetric nonlinear σ-models is [cf. (4.2)]

S = - \ \ d3xD2(g;/Φ)D«Φ'DaΦJ), (5.69)

where g^(Φ\) is a metric on a Riemannian manifold. Using the definitions of the
components (5.16) and eliminating the auxiliary field F using its field equation, we
find the component action

S = - \ \ d3x [g./A) (d«A%As + iψTβΨ$) + R > ̂ α W ^ ] , (5.70)

where

(5.71)

Here Γfo and R^^ are the Christoffel connection and Riemann tensor of the target
manifold with metric g^. The fields A* are the coordinates of the target manifold,
whereas the ψ*a

9s take their values in the tensor product space of spacetime spinors
and tangent vectors at the point A* of the target manifold.

One can also add an arbitrary function of Φ\ P(Φ% to the Lagrangian (5.69).
This adds nonderivative interaction terms.

If we require the action (5.69) to be invariant under extra supersymmetry
transformations (5.61), we find that the metric g is hermitian with respect to the
complex structure I, and that I is covariantly constant. Thus the manifold is
Kahler. In the same way, if we require (5.69) to be invariant under the three extra
supersymmetries (5.63), we find that the manifold is hyperkahler. Indeed, one can
use these arguments to prove the following classification theorem: For irreducible
target manifolds, the action (5.69) has JV = 1 supersymmetry for an arbitrary
Riemannian manifold, has N = 2 supersymmetry if and only if the manifold is
Kahler [28], and has N = 4 supersymmetry if and only if the manifold is
hyperkahler [29]. The supersymmetries beyond N = 1 are associated with complex
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Table 2. Theorem due to Zumino [28] and Alvarez-Gaume and Freedman [29] relating the
number of supersymmetries on the base space and the geometry of the target space

Number of supersymmetries Type of manifold

1 Riemannian
2 Kahler
3 or 4 Hyperkahler

structures on the manifold. Thus N = 3 supersymmetry implies N = 4 because two
anticommuting complex structures imply the existence of a third. We summarize
the theorem in Table 2.5

N = 2 supersymmetric actions for chiral superfields have the form [28]

S = J d3xD2D2K(Φ, Φ), (5.72)

where K is a real function of Φ and Φ. This describes a nonlinear σ-model if and
only if K depends algebraically on Φ and Φ but not on their derivatives.
Computing the component or N = 1 action one discovers that this has the form
(5.70) or (5.69) where the metric is a Kahler metric with Kahler potential K.

One can also add nonderivative interaction terms to (5.72). These involve an
arbitrary holomorphic function P(Φ) and have the form

SINT = J d3x(D2P(Φ) + D2P(Φ)). (5.73)

Note that the nonderivative interaction terms involve a chiral superspace
"measure" D2 rather than D2D2 as in (5.72).

If we impose invariance of the action (5.72) under the two additional
supersymmetry transformations (5.64) we recover the condition that K is the
Kahler potential of a hyperkahler manifold. We then also find an expression for Xp

in (5.64) [3]:

^ . (5.74)

This gives the N = 4 supersymmetry in terms of the complex structures in N = 2
superspace.

Superspace field equations can be derived from superspace actions by formally
(because the action involves anticommuting quantities) extremizing with respect
to the superfields. Care must be taken to first express constrained superfields
(5.36, 39) in terms of unconstrained ones (5.37,41).

6. The Supersymmetric Construction of Hyperkahler Metrics

(A) The Supersymmetric Legendre Transform Construction

The Legendre transform construction of hyperkahler manifolds of Sect. 2
originates in the correspondence between N = 4 supersymmetric nonlinear
σ-models and hyperkahler manifolds discussed in Sect. 5. Here we give this

5 The classification depends on the dimension of the spacetime M, see, e.g., [8]



Hyperkahler Metrics and Supersymmetry 583

supersymmetric construction [5]. It is a generalization of the duality of Sect. 4B to
a supersymmetric Legendre transform that interchanges chiral and linear N = 2
superfields.

Duality in N = 1 superspace closely parallels the bosonic duality. The general
supersymmetric σ-model action is (5.69)

S = -±μ3xD2(g;/Φ)D«Φ<Daφs). (6.1)

The component action (5.70) shows that g^(Φ4\) is a metric of a bosonic nonlinear
σ-model. Hence any bosonic σ-model in (three dimensions) has an JV = 1
supersymmetric extension. We assume the existence of a non-null Killing vector
field and choose coordinates Φ such that ge> is independent of Φ°. A first order
action is [cf. (4.8)]

S= -itμ3xD\g00Γ«Γa±2g0;rDaΦ' + g^D«Φ'DΛφJ+T«DVDaΓβ), (6.2)

where /,/ + 0 and Γ* and Γα are spinor superfields. (Formally) extremizing (6.2)
w.r.t. Tα gives

DβDaΓβ = 0, (6.3)

which is solved by [see (5.18)]

Γa = DaΦ°, (6.4)

where Φ° is a general real scalar superfield. Substituting (6.4) in (6.2) we recover
(6.1). Extremizing w.r.t. Γa [cf. (4.9)] and substituting the result in (6.2) we find the
dual action [cf. (4.10)]

S = - \ f d3xD2 [ (g 0 0 )" 1 £F«Fa + iF*gO;DaΦ')

+ (&>• - (goo)"' go£o,)D*&DaφS] (6.5)

with Fa = iDβDaTβ (5.22). The actions (6.5) and (6.1) are related via a Legendre
transform w.r.t. DaΦ°.

A supersymmetric nonlinear σ-model has N = 2 supersymmetry if and only if
the target space F is Kahler (see Table 2). The action in terms ofN — 2 superfields is
then (5.72)

2 Φ ~ q ) , (6.6)

where K is the Kahler potential. Expanding (6.6) in components using (5.36, 43) we
recognize a supersymmetric extension of the bosonic σ-model with metric
(d2K/dΦpdΦq)\. We assume the existence of a 1/(1) isometry generated by a
holomorphic Killing vector (1.4-8) and choose coordinates such that
K = K{Φ° + Φ°, Φp, Φ% p, q Φ 0. A first order action is

S= J d3xD2D2tK(V,Φp,Φ~q)-VG], (6.7)

where V is a real and G a linear superfield (5.39). Extremizing (6.7) w.r.t. G gives
[using (5.41)]

D*DaV=0, (6.8)

which implies
ΰ (6.9)
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Substituting (6.9) in (6.7) we recover (6.6). Extremizing w.r.t. V we find

d^=Kv=-G. (6.10)

This determines V as a function of G (and Φp, Φq, p, q Φ 0). The action obtained by
substituting V(G, Φp, Φq) into (6.7) is

S= μ3xD2D2\_K(V,Φp,Φq)-VG~]=\d3xD2D2f(G,Φp,Φq). (6.11)

The relation of K to / is via a Legendre transform. The Legendre transform from /
to K can be performed for any /(G, Φp, Φq) while the transform from K to f
requires the existence of a holomorphic Killing vector. For a general isometry
group acting on M the Legendre transform can be carried out for each commuting
holomorphic Killing vector [22].

A supersymmetric nonlinear σ-model has N = 4 supersymmetry if and only if
the target space F is hyperkahler (see Table 2). The action in terms of N = 2
superfϊelds is the action (6.6) with the additional requirement that K is a Kahler
potential for a hyperkahler manifold. The two nonmanifest supersymmetry
transformations are given by (5.64). In this case we find it more instructive to
describe the dualization starting from the N = 4 linear multiplet, which consists of
an N = 2 chiral superfield χ and an JV = 2 linear superfield G. The action for a set of
linear multiplets is

SG=$d3xD2D2f(G\χ\χ% (6.12)

It is invariant under the two nonmanifest supersymmetries

δϊ = D2(ήGi), δσ= -D*tfDaη)-D*tfDaή) (6.13)

[where η obeys (5.65)] if and only if

= 0 , VZJ (6.14)
This is a set of linear partial differential equations; for one N = 4 multiplet (6.14)
reduces to the three dimensional Laplace equation.

A first order action is

S= $d3xD2D2[f(Ψ\χί,χi)-Ψi(Φί + Φi)']. (6.15)

Extremizing S w.r.t. Φ and Φ we find that Ψ* are linear (Ψι = Gι) and recover (6.12).
Extremizing w.r.t. Ψ we find

ί ί (6.16)

Solving for ψ\ Ψ1^ Ψi(Φj + Φj

9χ
k,χk), and substituting into S gives

Sφ= μ3xD2D2lf(Ψi,χ{χj)-(Φi + Φi)Ψi^=μ3xD2D2K(Φj+Φj,χ\i(ί)-

(6.17)

This is an N = 4 supersymmetric nonlinear σ-model with n abelian holomorphic
isometries. K is the Legendre transform of/ The nonmanifest supersymmetries are

= D2{ή lKχi + Kφj(Kχjφk(Kφkφί) ~' - Kχlφk(KφkφJ) ~')] } (6.18)
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and the constraint (6.14) becomes

m(Kφmφn) Kφnχj .

This is a set of nonlinear partial differential equations. For one AT = 4 linear
multiplet (6.19) is the Monge-Ampere equation.

According to Table 1 in Sect. 5 the action (6.17) gives An (real) dimensional
hyperkahler manifolds. These are obtained by solving the linear partial differential
equations (6.14). Note that the constraint (6.19) on K corresponding to (6.14) is
nonlinear. The two noncanonical (integrable) complex structures J and K can be
read off from the supersymmetry transformations (6.18) by comparison to
(5.64, 66); this is how (2.8) was found.

The hyperkahler manifold has n abelian holomorphic isometries. It can be
shown that these are triholomorphic (1.14) [22], and that all An (real) dimensional
hyperkahler manifolds with n abelian triholomorphic isometries can be obtained
via the Legendre transform.

(B) Gauging of Isometries and the Quotient Construction

In this section we discuss JV= 1,2, and 4 supersymmetric extensions of the gauging
procedure and quotient construction of Sect. 4C. The N = 1 quotient leads to an
ordinary quotient (Sect. 3). The N = 2 quotient automatically leads to the Kahler
quotient of Sect. 2B [3]. This follows directly because we work in JV = 2 superspace,
and thus supersymmetry is preserved at every stage of the construction and the
classification theorem in Sect. 5 implies that the quotient manifold is Kahler. A key
feature is the complex action of the gauge group on chiral superfields. The N = 4
construction is a simple extension from N = 2; however, since we do not use N = 4
superfields, the N = 4 supersymmetry has to be verified explicitly [3].

The gauging of isometries of N = 1 σ-models precisely parallels the gauging
described in Sect. 4C. We consider a supersymmetric σ-model with action (5.69)

S= -±$d3xD2lg;/Φ)D«Φ'DaΦ^, (6.20)

where the metric g^ is invariant under isometries generated by a vector field X [cf.
(1.5-7)]

XAk*Λ. (6.21)

Note that kA(Φ<?) are functions of superfields. Using minimal coupling, (4.14), we
obtain the gauged action by replacing

D.Φ - Va& = DaΦ' + ΓAkA, (6.22)

where ΓA is the spinor component superfield of a connection super one-form [see
(5.25)]. We take the quotient by formally extremizing the action w.r.t. ΓΛ. We find
[cf. (4.16)]

ΓAkiHABDaΦ\ HAB = {g^AHT'\ (6.23)

ΓA is the pullback to superspace of the connection discussed in Sect. 3A. Substi-
tuting (6.23) into the gauged action, we find the nonlinear σ-model with the
induced metric for the quotient manifold

S = -±id3xD2l(g..-g^.kZkZHAB)D*&Da0S] . (6.24)
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This construction gives the ordinary quotient on the bosonic components (4.17),
and it constrains the fermions to lie in the tangent space of this quotient manifold.

The action of an N = 2 supersymmetric σ-model is (5.72)

S = J d3xD2D2K(Φ, Φ), (6.25)

where Φ and Φ are chiral superfields corresponding to holomorphic and
antiholomorphic coordinates z and z. When we attempt to gauge the holomorphic
isometries (1.4, 5), since there are no explicit derivatives in (6.25), we can not use the
minimal coupling prescription (6.22).

Under an isometry the Kahler potential K transforms as

, (6.26)

where vx = XΛvA(Φ) is a holomorphic function. From (1.10) it follows that

U A = vx-ίμx, (6.27)

where μx is the Hamiltonian function. As discussed in (5.54-56), in N = 2
supersymmetric systems, the gauge group G acts through its complexifϊcation Gc

as a consequence of the chiral structure of N = 2 superspace. The basic gauge field
in N = 2 superspace is a hermitian Lie-algebra valued superfield potential
V=VATA, where TA are the Lie-algebra generators. We define the superfield
generalization of (2.21),

Y=-iIV=-±V*(k'Adp-l?AZp). (6.28)

To gauge the action [3], we introduce an extra complex coordinate £( = (l/4π) Ins
in the language of Sect. 3E), and let it transform as [cf. (3.43)]

δxζ = vx. (6.29)

That this is an action (i.e., a realization of the symmetry group) follows
immediately from (6.27) and the equivariance of μ [cf. (1.7,10,11)]:

= v^γK (6.30)

Clearly, this gives a realization of the entire complexified group ((is a holomorphic
coordinate). We now define

K = K-ζ-ζ (6.31)

K= — Inh of Sect. 3E . This is manifestly invariant under the real group [but
4π /

transforms under the complex group as IXK = 2μx, cf. (3.51)]. As K is invariant, it
is sufficient to go to a representation where all fields transform with the same
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parameter. This we do with Y, and write the gauged K as

£ = eγK = K(Φ,Φ)-$dtetYμv-ζ-ζ. (6.32)
o

Since the coordinate ζ is holomorphic, it can be dropped. Then the gauged action is
given by the super Lagrange density [cf. (2.23)]

K(Φ, Φ, V) = K(Φ, Φ) - J dtetγμv, (6.33)
o

where μv = VAμA. Again we take the quotient by formally extremizing w.r.t. the
gauge potential, in this case VA. We find

eγμA = 0 (6.34)

which is to be solved for V(Φ, Φ). The Kahler potential K(Φ, Φ, V(Φ9 Φ)) is defined
[up to irrelevant holomorphic and antiholomorphic pieces, cf. (6.26)] on the orbit
space M = M/GC of the complexified group. This is the symplectic (Kahler)
quotient discussed in Sect. 3.

As an example of the construction we consider CP(1). We start from the flat
space Kahler potential for C2

K(Φ,Φ) = ΦPΦ~P, p = ί,2. (6.35)

We consider the 1/(1) isometry generated by

Xφp = iξφp ? xφp = - ίξφp. (6.36)

(Since this isometry has a fixed point, vξ + vξ vanishes.) The moment map has the
special form μξ= — ξ(K — c), where c is the arbitrary real constant discussed in
Sect. 1. We find the gauged Lagrange density (6.33)

K(Φ, Φ, V) = ΦpΦpev - cV. (6.37)

Extremizing w.r.t. V gives
ίφPφp\

evφPφ~p = c=> 7 = - I n , (6.38)

\ c J
and hence the Kahler potential on the quotient manifold is

Γ ίΦpΦp\ Ί
K(Φ, Φ,V(Φ,Φ)) = c I In ί — J + l j =cln(l+CQ + /(Φ) + /(Φ), (6.39)

where we have introduced inhomogenous coordinates ζ = Φί/Φ2 and
/ = c(ln(Φ2/]/2) +1/2) is an irrelevant holomorphic function. The Kahler potential
K in (6.39) is the familiar one for CP(1).

We now turn to the N = 4 construction. As discussed in Sect. 5, an N = 4
supersymmetric σ-model can be described in terms oϊN = 2 superfields and has the
action (6.25), where now K is the Kahler potential of a hyperkahler manifold. The
description in terms of N = 2 superfields selects one of the complex structures to
have its canonical form (1.1). Corresponding to this canonical complex structure
there is a real moment map μ(1) for each holomorphic isometry (1.10). From the
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remaining complex structures we also construct a holomorphic and an anti-

holomorphic moment map μ+ and μ~ for each triholomorphic isometry (1.15). As

discussed in Sect. 5, the N = 4 gauge multiplet is described by an N = 2 gauge

multiplet V and an AT = 2 chiral multiplet S. The gauged action is

S = Jd3x[D2D2K(Φ, Φ, V) + \D2μ% + i D 2 μ - ] , (6.40)

where K is given by (6.33) and μ + = SΛμ^. The crucial point is that the action (6.40)

is iV = 4 supersymmetric: The nonmanifest supersymmetries are given by (5.67)

and the gauge covariantizations of (5.64)

δφP = D2(ήezXp), δΦp = D2{ηe2Xp), Z = ίVAkp

Adp. (6.41)

Extremizing (6.40) w.r.t. V gives the condition (6.35) as before; extremizing w.r.t. S

and S gives

μ+=μ_=0. (6.42)

This is the hyperkahler quotient of Sect. 2. By the classification theorem (Table 2)

the hyperkahler property is ensured by the N = 4 supersymmetry of the action. The

noncanonical complex structures J and K can be read off from the supersymmetry

transformations (6.41) [cf. (5.64, 66)].
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