Math 611 Midterm review problems

Paul Hacking

October 21, 2015
(1) Let p be a prime and G a non-abelian group of order p^{3}. Determine the class equation of G.
(2) Let G be a non-abelian group of order 21 .
(a) Prove that the center of G is trivial.
(b) Determine the class equation of G.
(3) (a) Show that any non-trivial subgroup of Q_{8} contains the element -1 .
(b) Show that Q_{8} is isomorphic to a subgroup of S_{8}, but is not isomorphic to a subgroup of S_{n} for any $n<8$.
(4) Let G be a finite group of odd order and $x \in G$ an element. Show that if x and x^{-1} are conjugate then $x=e$.
(5) Let G be a group of order 60 such that the order of the center of G is divisible by 4 . Prove that G is abelian.
(6) Let G be a simple group of order 168. Determine the number of elements of order 7 in G.
(7) Let G be a group of order 20. Suppose G contains an element of order 4 and has trivial center. Describe G in terms of generators and relations.
(8) Let G be a finite group, N a normal subgroup of G, and p a prime such that p divides the order of G / N. Show that the number of Sylow p-subgroups of G / N is less than or equal to the number of Sylow p subgroups of G.
(9) Let G be a group of order $p^{2} q$ where p and q are distinct primes. Show that one of the Sylow subgroups of G is normal.
(10) Determine the number of Sylow 2-subgroups in the alternating group A_{5}.
(11) Show that a group of order (a) 40 (b) 48 is solvable.
[Note: Actually it is a theorem of Burnside that any group of order $p^{a} q^{b}$ is solvable. But please prove these special cases without appealing to Burnside's theorem.]
(12) Show that there is no simple group of order 120.
(13) Let G be a finite group and p a prime dividing $|G|$. Suppose H is a subgroup of G of index p.
(a) What are the possibilities for the number of conjugate subgroups of H ?
(b) Suppose in addition that p is the smallest prime dividing $|G|$. Prove that H is normal.
(14) Let $G=\left\langle x, y, z \mid y z^{2} x y\right\rangle$ be the group generated by x, y, z subject to the relation $y z^{2} x y=e$. Prove that G is isomorphic to the free group generated by two elements.
(15) In each of the following cases, identify the group described by generators and relations with a standard group.
(a) $\left\langle a, b \mid a^{5}=b^{2}=(a b)^{2}=e\right\rangle$.
(b) $\left\langle a, b \mid a^{4}=e, a^{2}=b^{2}, b a=a^{-1} b\right\rangle$.
[Hint: First guess the standard group G and a set of two generators $A, B \in G$ satisfying the given relations. Let $\theta: F / N \rightarrow G$ be the surjective homomorphism from the abstractly defined group to G determined by $\theta(a)=A, \theta(b)=B$ (using the universal property of the free group). Show that θ is injective and so an isomorphism.]
(16) Let $G=\left\langle x, y \mid x^{2}, y^{2}\right\rangle$ be the group generated by x and y subject to the relations $x^{2}=e$ and $y^{2}=e$. Describe an isomorphism θ from G to a semi-direct product of two abelian groups.

