Math 611 Homework 8

Paul Hacking

December 4, 2015

All rings are assumed to be commutative with 1 .
(1) Let R be a ring and M an R-module. We say M is cyclic if it is generated as an R-module by a single element $m \in M$.
(a) Show that if M is cyclic then M is isomorphic to R / I for some ideal $I \subset R$.
(b) Let M be the $\mathbb{R}[x]$-module determined by the \mathbb{R}-vector space $V=$ \mathbb{R}^{2} and the linear transformation T given by the matrix $A=$ $\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$. Is M a cyclic module?
(2) For each of the following abelian groups, determine an isomorphic direct product of cyclic groups.
(a) $\mathbb{Z}^{3} / A \mathbb{Z}^{2}$, where $A=\left(\begin{array}{ll}3 & 2 \\ 2 & 0 \\ 8 & 4\end{array}\right)$
(b) $\mathbb{Z}^{3} / A \mathbb{Z}^{3}$, where $A=\left(\begin{array}{ccc}-4 & -6 & 7 \\ 2 & 2 & 4 \\ 6 & 6 & 15\end{array}\right)$.
(3) Let $R=\mathbb{C}[x]$ and let M be the R-module $M=R^{2} / A R^{2}$, where

$$
A=\left(\begin{array}{cc}
x+1 & 2 x+3 \\
x^{3}+x+2 & 2 x^{3}+x+6
\end{array}\right) .
$$

Determine a direct sum of cyclic R-modules which is isomorphic to M. Use the Chinese remainder theorem to further decompose M if possible.
(4) Let $R=\mathbb{Z}[i]$ and let M be the R-module $M=R^{2} / A R^{2}$ where

$$
A=\left(\begin{array}{cc}
1+i & 3 \\
2-i & 5 i
\end{array}\right)
$$

Determine a direct sum of cyclic R-modules which is isomorphic to M. Use the Chinese remainder theorem to further decompose M if possible.
(5) Let $M=\mathbb{Z}^{3}$ and let $N \subset M$ be the subgroup generated by the elements

$$
m_{1}=\left(\begin{array}{l}
2 \\
4 \\
1
\end{array}\right), m_{2}=\left(\begin{array}{l}
1 \\
5 \\
2
\end{array}\right), m_{3}=\left(\begin{array}{l}
5 \\
7 \\
1
\end{array}\right) .
$$

(a) Determine the isomorphism type of the abelian groups N and M / N. (Identify each group with a direct sum of copies of \mathbb{Z} and $\mathbb{Z} / p^{\alpha} \mathbb{Z}$ for p prime.)
(b) Does there exist a submodule $L \subset M$ such that $M=L \oplus N$?
(6) (a) Let R be a ring and $I \subset R$ an ideal. Describe a bijective correspondence between R / I-modules and R-modules M such that $x \cdot m=0$ for all $x \in I$ and $m \in M$.
(b) Let F be a field. Describe the classification of finitely generated modules over the ring $F[x] /\left(x^{2}\right)$.
(7) Let R be a PID and L, M, N finitely generated R-modules. Show that if $L \oplus N \simeq M \oplus N$ then $L \simeq M$.
(8) Classify matrices $A \in \mathrm{GL}_{4}(\mathbb{Q})$ of orders 4 and 5 up to conjugacy $A \rightsquigarrow$ $P^{-1} A P$.
(9) Suppose $A \in \mathrm{GL}_{n}(\mathbb{Q})$ satisfies $A^{8}=9 I$. Show that n is divisible by 4 and give an explicit example of such a matrix A for $n=4$.
(10) Let p be a prime. Determine the number of conjugacy classes in $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$.
(11) Let $J(m, \lambda)$ denote the $m \times m$ matrix

$$
\left(\begin{array}{cccccc}
\lambda & 0 & 0 & \cdots & 0 & 0 \\
1 & \lambda & 0 & \cdots & 0 & 0 \\
0 & 1 & \lambda & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda & 0 \\
0 & 0 & 0 & \cdots & 1 & \lambda
\end{array}\right)
$$

We call $J(m, \lambda)$ the Jordan block of size m with eigenvalue λ. [Note: In DF they use the transpose of the above matrix. This corresponds to a change of basis given by reversing the order of the basis.]
Show that λ is the unique eigenvalue of $J(m, \lambda)$ and

$$
\operatorname{dim} \operatorname{ker}(J(m, \lambda)-\lambda I)^{k}=\min (k, m)
$$

(12) Let $F=\mathbb{C}$ (or any algebraically closed field) and $A \in F^{n \times n}$ a square matrix with entries in F. What is the Jordan normal form of A ? Suppose that the eigenvalues of A are $\lambda_{i}, i=1, \ldots, r$, and the sizes of the Jordan blocks with eigenvalue λ_{i} are $m_{i 1} \leq m_{i 2} \leq \ldots \leq m_{i s_{i}}$.
(a) What is the characteristic polynomial of A ? What is the minimal polynomial of A ?
(b) Let $d_{i k}=\operatorname{dim} \operatorname{ker}\left(A-\lambda_{i} I\right)^{k}$. Using Q11 or otherwise, describe an algorithm to determine the block sizes $m_{i j}$ in terms of the dimensions $d_{i k}$.
(c) Determine the Jordan normal form of the matrix

$$
A=\left(\begin{array}{ccc}
4 & 1 & 1 \\
-10 & -3 & -5 \\
6 & 3 & 5
\end{array}\right)
$$

(13) Let R be a UFD and $f, g \in R$ nonzero elements such that $\operatorname{gcd}(f, g)=1$. Let $I=(f, g) \subset R$ denote the ideal generated by f and g. [Warning: We do not assume that R is a PID so $I \neq R$ in general.] Prove that the sequence of R-modules

$$
0 \rightarrow R \xrightarrow{\alpha} R^{2} \xrightarrow{\beta} I \rightarrow 0
$$

given by

$$
\alpha(a)=(a g,-a f)
$$

and

$$
\beta(a, b)=a f+b g
$$

is exact.
(14) Let $\delta=\sqrt{-5}, R=\mathbb{Z}[\delta]$ and $M=(2,1+\delta) \subset R$. Determine a presentation for the R-module M, that is, a matrix $A \in R^{m \times n}$ for some m, n such that $M \simeq R^{m} / A \cdot R^{n}$. [Warning: R is not a UFD].
(15) Let F be a field and $R=F[x, y, z]$. Let $m=(x, y, z) \subset R$ be the maximal ideal generated by x, y, and z. Consider the sequence of R-modules

$$
R^{3} \xrightarrow{\beta} R^{3} \xrightarrow{\gamma} m \rightarrow 0
$$

where

$$
\gamma(a, b, c)=a x+b y+c z
$$

and the homomorphism β is given by the matrix

$$
\left(\begin{array}{ccc}
y & z & 0 \\
-x & 0 & z \\
0 & -x & -y
\end{array}\right)
$$

(a) Show that the sequence is exact.
(b) Determine the kernel of β and use your result to describe an exact sequence

$$
0 \rightarrow R \xrightarrow{\alpha} R^{3} \xrightarrow{\beta} R^{3} \xrightarrow{\gamma} m \rightarrow 0 .
$$

Hints:

(1) (b) What is the rational canonical form of A ?
(7) What is the uniqueness statement in the structure theorem of finitely generated modules over a PID?
(8) Two matrices are conjugate iff they have the same rational canonical form. If $A^{k}=I$ what can you say about the minimal polynomial of A ?
(9) What are the possibilities for the minimal polynomial of A ?
(10) Use rational canonical form of matrices over $F=\mathbb{Z} / p \mathbb{Z}$.

