Math 611 Homework 7

Paul Hacking

November 19, 2015

All rings are assumed to be commutative with 1 .
(1) Let F be a field. Prove that there are infinitely many monic irreducible polynomials in $F[x]$.
(2) Determine the irreducible polynomials in $\mathbb{Z} / 2 \mathbb{Z}[x]$ of degree ≤ 4.
(3) For each of the following polynomials, determine its factorization into irreducibles in $\mathbb{Q}[x]$.
(a) $x^{3}+4 x+1$.
(b) $x^{4}+10 x^{2}+9$.
(c) $x^{6}-1$.
(d) $x^{4}+3 x^{3}+5 x^{2}+x+7$.
(e) $x^{n}+57$, where $n \in \mathbb{N}$.
(4) Let n be a positive integer.
(a) Show that $x^{n}+y^{n}-1$ is irreducible in $\mathbb{C}[x, y]$.
(b) Show that $x^{n} y+y^{n} z+z^{n} x$ is irreducible in $\mathbb{C}[x, y, z]$.
(5) Let $n \in \mathbb{N}$ be a positive integer and $p \in \mathbb{N}$ be a prime. Let $f=$ $a_{2 n+1} x^{2 n+1}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$ be a polynomial of odd degree $2 n+1$ with integer coefficients. Suppose that p does not divide $a_{2 n+1}, p$ divides $a_{2 n}, a_{2 n-1}, \ldots, a_{n+1}, p^{2}$ divides $a_{n}, a_{n-1}, \ldots, a_{0}$, and p^{3} does not divide a_{0}. Prove that f is irreducible in $\mathbb{Q}[x]$.
(6) Let $\alpha \in \mathbb{C}$ be a complex number. Consider the homomorphism

$$
\varphi: \mathbb{Q}[x] \rightarrow \mathbb{C}, \quad \varphi(f(x))=f(\alpha)
$$

(a) Show that either $\operatorname{ker}(\varphi)=\{0\}$, in which case we say α is transcendental, or $\operatorname{ker}(\varphi)=(m)$ where $m \in \mathbb{Q}[x]$ is a monic irreducible polynomial, in which case we say α is algebraic and m is the minimal polynomial of α over \mathbb{Q}.
(b) Show that $\mathbb{Q}[\alpha]:=\varphi(\mathbb{Q}[x])$ is a field iff α is algebraic.
(7) Let $p \in \mathbb{N}$ be a prime, and $R=\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$ the ring of Gaussian integers. Show that the ring $R /(p)$ is (i) a field of order p^{2} for $p \equiv 3 \bmod 4$, (ii) isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{2}$ for $p \equiv 1 \bmod 4$, and (iii) isomorphic to $(\mathbb{Z} / p \mathbb{Z})[x] /\left(x^{2}\right)$ for $p=2$.
(8) Let F be a field. Let $R=F[x]$ and consider the R-module $M=R /\left(x^{n}\right)$. Interpret M as an F-vector space $M=V$ together with a linear transformation $T: V \rightarrow V$ given by $T(v)=x \cdot v$ (scalar multiplication of $v \in V=M$ by $x \in R$). Write down a basis of V as an F-vector space and compute the matrix A of T with respect to this basis.
(9) Let R be a ring and $M=R^{n}$ a free R-module. For each of the following statements, give a proof or a counterexample.
(a) Any linearly independent set in M can be extended to a basis of M.
(b) Any spanning set of M contains a basis of M.
(c) Let $\varphi: M \rightarrow M, \varphi(\mathbf{x})=A \mathbf{x}$ be an R-module homomorphism.
i. If φ is injective, then it is an isomorphism.
ii. If φ is surjective, then it is an isomorphism.
(10) Let R be a ring and $f \in R[x]$ a polynomial of degree $n>0$.
(a) Show that if the leading coefficient of f is a unit then the quotient ring $R[x] /(f)$ is a free R-module of rank n.
(b) Show that $\mathbb{Z}[x] /(2 x-1)$ is not a free \mathbb{Z}-module.
(11) Let R be a integral domain and F its field of fractions. Let $A \in R^{m \times n}$ be an $m \times n$ matrix with entries in R, defining a homomorphism of free R-modules

$$
\varphi: R^{n} \rightarrow R^{m}, \quad \mathbf{x} \mapsto A \mathbf{x}
$$

Let

$$
\varphi_{F}: F^{n} \rightarrow F^{m}, \quad \mathbf{x} \mapsto A \mathbf{x}
$$

be the associated linear transformation of F-vector spaces. Show that φ is injective iff φ_{F} is injective. (In particular, if φ is injective then $n \leq m$.)
(12) Let R be a ring and $A \in R^{m \times n}$ an $m \times n$ matrix with entries in R. Show that the following conditions are equivalent
(a) The R-module homomorphism $\varphi: R^{n} \rightarrow R^{m}$ given by $\varphi(\mathbf{x})=A \mathbf{x}$ is surjective.
(b) There exists a matrix $B \in R^{n \times m}$ such that $A B=I_{m}$ (the $m \times m$ identity matrix).
(c) First, we have $n \geq m$. Second, let J be the ideal of R generated by the $m \times m$ minors of A (the determinants of the matrices formed by a choice of m columns of A). Then $J=R$.
(13) Let $R=\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$ be the ring of Gaussian integers.
(a) Show that an R-module M can be interpreted as an abelian group $M=A$ together with a homomorphism $\varphi: A \rightarrow A$ such that $\varphi(\varphi(x))=-x$ for all $x \in A$.
(b) For which prime numbers p can the abelian group $A=\mathbb{Z} / p \mathbb{Z}$ be made into an R-module? What about $A=(\mathbb{Z} / p \mathbb{Z})^{2}$?
(14) Let F be a field and $R=F[x, y]$.
(a) Show that an R-module M can be interpreted as an F-vector space $M=V$ together with two linear transformations $S: V \rightarrow V$ and $T: V \rightarrow V$ such that $S \circ T=T \circ S$.
(b) Using part (a) or otherwise, give an example of two 5×5 matrices A and B such that $A B=B A$ and

$$
A^{i} B^{j}=0 \Longleftrightarrow i \geq 2 \text { or } j \geq 3 \text { or }(i \geq 1 \text { and } j \geq 2)
$$

Hints:

(1) Adapt Euclid's argument that there are infinitely many prime integers.
(2) To find all irreducibles of degree $\leq N$: First list all nonconstant polynomials with $\mathbb{Z} / 2 \mathbb{Z}$ coefficients of degree $\leq N$ in order of increasing degree. (It is best to use a systematic total order, e.g., so that the coefficients of the nth polynomial in the list are the digits of the integer $n+1$ written in base 2.) Now use the sieve method: at each step the first polynomial in the list is irreducible. Remove nontrivial multiples of that polynomial from the list. Repeat. Note: (i) $(x-\alpha)$ divides f iff $f(\alpha)=0$ and (ii) once we have removed multiples of irreducibles of degree $\leq d$ the remaining polynomials of degree $\leq 2 d+1$ are necessarily irreducible (why?). For $\mathbb{Z} / p \mathbb{Z}$, the same procedure applied to monic polynomials gives all irreducibles up to units (a unit in $F[x]$ is a nonzero constant).
(3) (a) For F a field and $f \in F[x]$ a polynomial of degree $\leq 3, f$ is irreducible in $F[x]$ iff f does not have a root in F (why?). Also, if R is a UFD, and $\alpha=a / b \in F=\mathrm{ff} R$ is a root of $f=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in$ $R[x]$ expressed in its lowest terms $(\operatorname{gcd}(a, b)=1)$, then a divides a_{0} and b divides a_{n} (why?). (d) Reduce mod 2 and use Q2. (e) What is Eisenstein's criterion?
(4) Both polynomials can be shown to be irreducible using the generalized Eisenstein criterion for the polynomial ring $R[x], R=\mathbb{C}[y]$ or $\mathbb{C}[y, z]$, and a prime ideal $P=(f) \subset R$ for some irreducible element $f \in$ R together with the Gauss Lemma. (In more detail, the Eisenstein criterion shows the polynomial is irreducible in $F[x]$ where $F=\mathrm{ff} R$ is the fraction field of R; now by the Gauss Lemma it is irreducible in $R[x]$ iff it is primitive.)
(5) Follow the strategy of the proof of the Eisenstein criterion: Suppose f is reducible in $\mathbb{Q}[x]$, then by the Gauss Lemma $f=g h$ in $\mathbb{Z}[x]$ where $\operatorname{deg}(g), \operatorname{deg}(h)>0$. Reduce $\bmod p$ and deduce properties of the coefficents of g and h. Now, since $\operatorname{deg}(f)$ is odd we have $\operatorname{deg}(g) \neq$ $\operatorname{deg}(h)$, say $m=\operatorname{deg}(g)<\operatorname{deg}(h)$. Consider the coefficient of x^{m} in f. Derive a contradiction by showing p^{3} divides a_{0}.
(6) (b) Use HW6Q1b.
(7) We have $\mathbb{Z}[i] \simeq \mathbb{Z}[x] /\left(x^{2}+1\right)$, so

$$
\mathbb{Z}[i] /(p) \simeq \mathbb{Z}[x] /\left(p, x^{2}+1\right) \simeq(\mathbb{Z} / p \mathbb{Z})[x] /\left(x^{2}+1\right)
$$

(Compare the proof of the classification of primes in $\mathbb{Z}[i]$ given in class.) Now use the fact that $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic to describe the factorization of $x^{2}+1$ modulo p.
(9) (a), (b), and (c)(i) are false for $R=\mathbb{Z}$ and $n=1$. (c)(ii) If φ is surjective then there exists $B \in R^{n \times n}$ such that $A B=I_{n}$ (why?). Deduce that $\operatorname{det} A$ is a unit and so A is invertible.
(10) (a) What is the division algorithm in $R[x]$? (b) Compare HW6Q5a.
(12) $(\mathrm{b}) \Rightarrow(\mathrm{c})$: The columns of $A B$ are linear combinations of the columns of A. Deduce using the multilinearity of the determinant that $\operatorname{det}(A B)$ is a linear combination of the determinants of the matrices formed by a choice of m columns of A. (c) $\Rightarrow(\mathrm{b})$: Let $I \subset\{1, \ldots, n\}$ be a subset of size m and A_{I} be the $m \times m$ matrix formed by the columns of A labelled by I. We have $\left(\operatorname{det} A_{I}\right) I_{m}=A_{I} \cdot \operatorname{adj} A_{I}$ for each I. Now use the assumption on the minors det A_{I} to construct a $n \times m$ matrix B such that $A B=I_{m}$.
(14) (b) Consider $M=F[x, y] / I$ for some ideal $I \subset F[x, y]$.

