Math 611 Homework 6

Paul Hacking

November 19, 2015

All rings are assumed to be commutative with 1 .
(1) Let R be a integral domain. We say an element $0 \neq a \in R$ is irreducible if a is not a unit and there does not exist a factorization $a=b c$ with $b, c \in R$ such that b and c are not units.
(a) What are the irreducible elements in (i) $\mathbb{C}[x]$? (ii) $\mathbb{R}[x]$?
(b) Show that if R is a principal ideal domain and R is not a field then the maximal ideals in R are the principal ideals (a) for $a \in R$ an irreducible element. (Note: this follows directly from definitions without using the statement "PID \Rightarrow UFD" proved in class.)
(2) We say a ring R is Noetherian if there does not exist an infinite ascending chain

$$
I_{1} \subsetneq I_{2} \subsetneq I_{3} \subsetneq \cdots
$$

of ideals of R. Equivalently, every ideal I of R is finitely generated, that is, there exist $a_{1}, a_{2}, \ldots, a_{n} \in R$ such that

$$
I=\left(a_{1}, a_{2}, \ldots, a_{n}\right):=\left\{r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n} \mid r_{1}, \ldots, r_{n} \in R\right\}
$$

(a) Show that \mathbb{Z} is Noetherian, and any field F is Noetherian.
(b) The Hilbert basis theorem (DF p. 316) states that if R is Noetherian then $R[x]$ is Noetherian. Deduce that the polynomial rings $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and $F\left[x_{1}, \ldots, x_{n}\right]$ are Noetherian (where $n \in \mathbb{N}$ and F is a field).
(c) Show that if R is a Noetherian ring and $I \subset R$ is an ideal then R / I is Noetherian.
(d) Show that if R is a Noetherian ring, S is any ring, and $\varphi: R \rightarrow S$ is a ring homomorphism, then the image $\varphi(R)$ of φ (a subring of S) is a Noetherian ring.
(e) Let R be a ring. Suppose there exist a coefficient ring $A=\mathbb{Z}$ or F, a field, and elements $\alpha_{1}, \ldots, \alpha_{n} \in R$ such that every element of R may be expressed as a finite sum

$$
\sum a_{i_{1}, \ldots, i_{n}} \alpha_{1}^{i_{1}} \cdots \alpha_{n}^{i_{n}}
$$

with coefficients $a_{i_{1}, \ldots, i_{n}} \in A$. (Here in the case $A=F$ we assume that F is a subring of R.) Show that R is Noetherian.
(3) In this question we will show by example that a subring of a Noetherian ring is not necessarily Noetherian. Let F be a field and $S=F[x, y]$. Then S is Noetherian by the Hilbert basis theorem. Define

$$
R:=\left\{\sum a_{i j} x^{i} y^{j} \in S \mid a_{0 j}=0 \text { for all } j>0\right\} .
$$

(a) Show that R is a subring of S.
(b) Show that R is not Noetherian.
(4) We say a ring R is Artinian if there does not exist an infinite descending chain

$$
I_{1} \supsetneq I_{2} \supsetneq I_{3} \supsetneq \cdots
$$

of ideals of R. While this condition appears to be similar to the Noetherian condition, it is actually much more restrictive!
(a) Show that \mathbb{Z} is not Artinian.
(b) Let R be a ring, $R \neq\{0\}$. Show that $R[x]$ is not Artinian.
(c) Suppose R is a ring such that R is a finite set. Show that R is Artinian.
(d) Suppose F is a field and R is a ring containing F as a subring. Then R has the structure of an F-vector space (with the scalar multiplication $\lambda \cdot v$ for $\lambda \in F$ and $v \in R$ being given by multiplication in the ring R). Suppose that R is finite dimensional as an F-vector space. Show that R is Artinian.
(e) Let n be a positive integer. Show that $\mathbb{Z} / n \mathbb{Z}$ is Artinian
(f) Let F be a field and $0 \neq f \in F[x]$ a nonzero polynomial. Show that the quotient ring $F[x] /(f)$ is Artinian.
(5) Let R be a ring and $a \in R$ an element of R. Consider the quotient ring

$$
R_{a}:=R[x] /(a x-1) .
$$

This is the ring obtained from R by formally inverting the element $a \in R$. Let $\varphi: R \rightarrow R_{a}$ be the composition of the inclusion $R \subset R[x]$ and the quotient map $R[x] \rightarrow R_{a}$.
(a) Show that if R is an integral domain, $F=\mathrm{ff} R$ is its fraction field, and $a \neq 0$, then R_{a} is isomorphic to the subring S of F given by

$$
S=\left\{b / a^{n} \mid b \in R, n \in \mathbb{Z}_{\geq 0}\right\} \subset F .
$$

(b) In general show that the kernel of φ is given by

$$
\operatorname{ker}(\varphi)=(a x-1) \cap R=\left\{b \in R \mid a^{n} b=0 \text { for some } n \in \mathbb{N}\right\}
$$

(c) Let $R=\mathbb{C}[s, t] /(s t)$ and $a=s \in R$. (More carefully, I mean that a is the image of s in R under the quotient map $\mathbb{C}[s, t] \rightarrow R)$. Describe R_{a} as a subring of a standard ring.
(6) Let

$$
R=\mathbb{Z}[\sqrt{-2}]=\{a+b \sqrt{-2} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}
$$

a subring of \mathbb{C}. Prove that R is a UFD.
(7) Let $d \in \mathbb{Z}$ be an integer. Prove that

$$
R:=\{a+b(1+\sqrt{d}) / 2 \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}
$$

is a subring of \mathbb{C} iff $d \equiv 1 \bmod 4$.
(8) Let $\omega=\frac{1}{2}(-1+\sqrt{-3})$, a primitive cube root of unity, and

$$
R=\mathbb{Z}[\omega]=\{a+b \omega \mid a, b \in \mathbb{Z}\} \subset \mathbb{C} .
$$

(This is a subring of \mathbb{C} by Q7.) Prove that R is a UFD.
(9) Let R be a UFD and $F=\mathrm{ff}(R)$ its field of fractions. Suppose $f \in R[x]$ is a monic polynomial (a polynomial with leading coefficient equal to 1). Suppose $\alpha \in F$ satisfies $f(\alpha)=0$. Prove that $\alpha \in R$.
(10) Let

$$
R=\mathbb{Z}[\sqrt{5}]=\{a+b \sqrt{5} \mid a, b \in \mathbb{Z}\} \subset \mathbb{R}
$$ a subring of \mathbb{R}. Show that R is not a UFD.

(11) Let

$$
R=\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\} \subset \mathbb{R}
$$ a subring of \mathbb{R}. Define

$$
\theta: R \rightarrow R, \quad \theta(a+b \sqrt{2})=a-b \sqrt{2}
$$

and

$$
\sigma: R \rightarrow \mathbb{Z}_{\geq 0}, \quad \sigma(\alpha)=|\alpha \cdot \theta(\alpha)|
$$

explicitly

$$
\sigma(a+b \sqrt{2})=\left|a^{2}-2 b^{2}\right| .
$$

(a) Show that θ is a ring homomorphism. Deduce that $\sigma(\alpha \beta)=$ $\sigma(\alpha) \sigma(\beta)$ for all $\alpha, \beta \in R$.
(b) Show that $\sigma(\alpha) \neq 0$ for $\alpha \neq 0$.
(c) Show that $\alpha \in R$ is a unit iff $\sigma(\alpha)=1$.
(d) Find a unit $\alpha \in R$, and use it to prove that there are infinitely many units in R.
(e) (Optional) Show that R is a UFD.
(12) Let

$$
R=\mathbb{C}[x, y] /\left(y^{2}-x^{3}\right)
$$

Prove carefully that R is not a UFD.

Hints:

(2) (b) Recall $R[x, y]=(R[x])[y]$. (d) Use the first isomorphism theorem. (e) Use (b) and (d).
(3) (b) For $n \in \mathbb{Z}_{\geq 0}$ define the ideal $I_{n}=\left(x, x y, x y^{2}, \ldots, x y^{n}\right) \subset R$. Prove that $I_{n} \subsetneq I_{n+1}$ for all $n \geq 0$.
(4) (d) If $I \subset R$ is an ideal then in particular I is a subspace of the F vector space R (why?). (f) What is a basis for $F[x] /(f)$ as an F-vector space?
(5) (a) Use the first isomorphism theorem. (b) Compute the intersection $(a x-1) \cap R$ in $R[x]$ explicitly. (c) $R_{a}=\mathbb{C}[s, t, x] /(s t, s x-1)$. What can you say about the element $t \in R_{a}$?
(6) Adapt the geometric proof that $\mathbb{Z}[i]$ is a UFD given in class.
(8) Again there is a geometric proof similar to the case of $\mathbb{Z}[i]$.
(9) You may be familiar with this result in the case $R=\mathbb{Z}$. The proof in the general case is the same.
(10) This can be proved using the result of Q9.
(11) (d) The units form a group under multiplication. (e) Show that R is an ED for the size function σ. Given $\alpha, \beta \in R, \beta \neq 0$, we have $\alpha / \beta=x+y \sqrt{2}$ with $x, y \in \mathbb{Q}$. So there exists $q \in R$ such that $\alpha / \beta-q=u+v \sqrt{2}$ with $|u|,|v| \leq 1 / 2$.
(12) The ring R can be identified with the subring S of $\mathbb{C}[t]$ given by

$$
S=\left\{\sum a_{i} t^{i} \mid a_{1}=0\right\} \subset \mathbb{C}[t]
$$

using the map $\varphi: \mathbb{C}[x, y] \rightarrow \mathbb{C}[t], \varphi(f(x, y))=f\left(t^{2}, t^{3}\right)$ and the first isomorphism theorem. See HW5Q5a. Prove carefully that $x, y \in R$ are irreducible. Consider the equality $y^{2}=x^{3}$ in R. Alternatively, use Q9.]

