Math 611 Homework 4

Paul Hacking

October 28, 2015
(1) Let G be a group such that $|G|=m n$ where $\operatorname{gcd}(m, n)=1$. Suppose there exists a normal subgroup $H \triangleleft G$ of order $|H|=m$ and a subgroup $K \leq G$ of order $|K|=n$. Show that G is isomorphic to a semi-direct product of H and K.
(2) Express the following groups as a semi-direct product of two non-trivial groups.
(a) The group $\mathrm{O}(2)$ of orthogonal 2×2 matrices.
(b) The symmetric group S_{n} on n objects, for $n \geq 3$.
(c) The general linear group $\mathrm{GL}_{n}(F)$ of invertible $n \times n$ matrices over a field F, for $n \geq 2$ and $F \neq \mathbb{Z} / 2 \mathbb{Z}$.
(3) Show that the general linear group $\mathrm{GL}_{n}(F)$ of invertible $n \times n$ matrices over a field F is a direct product of two non-trivial groups in the following cases.
(a) $F=\mathbb{R}$ and n is odd.
(b) $F=\mathbb{Z} / p \mathbb{Z}$ and $\operatorname{gcd}(n, p-1)=1$.
(4) In class we discussed the automorphism group $\operatorname{Aut}\left(Q_{8}\right)$ of the quaternion group Q_{8}.
(a) Show carefully that $\operatorname{Aut}\left(Q_{8}\right)$ is isomorphic to S_{4}.
(b) Using your answer to part (a) or otherwise, express S_{4} as a semidirect product $(\mathbb{Z} / 2 \mathbb{Z})^{2} \rtimes_{\varphi} S_{3}$. What is the homomorphism $\varphi: S_{3} \rightarrow \operatorname{Aut}\left((\mathbb{Z} / 2 \mathbb{Z})^{2}\right)$?
(5) Compute the number of Sylow p-subgroups of G in each of the following cases.
(a) $p=2$ and $G=D_{60}$, the dihedral group of symmetries of a regular 60-gon.
(b) $p=3$ and $G=S_{6}$, the symmetric group on 6 objects.
(c) $p=5$ and $G=\mathrm{GL}_{3}(\mathbb{Z} / 5 \mathbb{Z})$, the general linear group of invertible 3×3 matrices over $\mathbb{Z} / 5 \mathbb{Z}$.
(6) What are the possibilities for the number of elements of order 5 in a group G of order 50 ? Include examples showing that each case occurs.
(7) Classify groups G of order 45 .
(8) Let G be a non-abelian group of order 57. Describe G (a) as a semidirect product and (b) in terms of generators and relations.
(9) Let G be a group of order $|G|=p^{a} q^{b}$ where p and q are distinct primes and $a, b \in \mathbb{N}$. Suppose that the order of p in the multiplicative group $(\mathbb{Z} / q \mathbb{Z})^{\times}$is greater than a. Show that G is isomorphic to the semi-direct product of two non-trivial groups.
(10) Let G be a group of order $|G|=p q r$ where p, q, r are distinct primes. Show that one of the Sylow subgroups of G is normal.
(11) Classify groups G of order (a) $|G|=18$, (b) $|G|=28$. (Express the groups as semi-direct products. You should also write the groups in terms of generators and relations and identify them with direct products of known groups where possible.)
(12) Let G be a finite group and let $\varphi: G \rightarrow S_{G}$ be the homomorphism given by the action of G on itself by left multiplication. (Here S_{G} denotes the symmetric group of permutations of the set G.)
(a) Show that $\varphi(g)$ is an odd permutation iff the order $\operatorname{ord}(g)$ is even and $|G| / \operatorname{ord}(g)$ is odd.
(b) Suppose $|G|=2 m$ where m is odd. Prove that G contains a normal subgroup of index 2 .
(13) Let $G=\mathrm{GL}_{n}(\mathbb{Z} / p \mathbb{Z})$ and let $H \leq G$ be a subgroup of order a power of p. Prove that there exists $g \in G$ such that $g h g^{-1}$ is upper triangular for all $h \in H$.

Hints:

(1) By a result proved in class, it suffices to show that $H \cap K=\{e\}$ and $H K=G$.
(2) (a) Compare HW3Q3. (b) Consider $A_{n} \triangleleft S_{n}$. (c) Consider $\mathrm{SL}_{n}(F) \triangleleft$ $\mathrm{GL}_{n}(F)$.
(3) Compute the intersection $\mathrm{SL}_{n}(F) \cap Z\left(\mathrm{GL}_{n}(F)\right)$. (b) Recall that the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic.
(4) (a) Recall that S_{4} is isomorphic to the group of rotations of the cube. Consider the cube with vertices $(\pm 1, \pm 1, \pm 1)$ in \mathbb{R}^{3}, so that the centers of the faces are $\pm i, \pm j, \pm k$, where $i=(1,0,0), j=(0,1,0), k=$ $(0,0,1)$. Note that the quaternion multiplication agrees with the cross product (i.e., $i j=i \times j$ etc.). (b) Recall that $S_{3} \simeq \mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})=$ $\operatorname{Aut}\left((\mathbb{Z} / 2 \mathbb{Z})^{2}\right)$.
(5) Recall that all Sylow p-subgroups are conjugate. Find one Sylow subgroup and compute the number of conjugate subgroups.
(6) As a special case of Sylow theorem 2, any element of order p is contained in a Sylow p-subgroup. What is the classification of groups of order p^{2} ?
(12) (a) What is the cycle type of the permutation $\varphi(g)$?
(13) What is a Sylow p-subgroup of $\mathrm{GL}_{n}(\mathbb{Z} / p \mathbb{Z})$?

