Math 611 Homework 3

Paul Hacking

September 28, 2015
(1) Enumerate all the normal subgroups of the symmetric group S_{4}.
(2) Let G be the group of rotational symmetries of the cube. Recall that there is an isomorphism

$$
\varphi: G \xrightarrow{\sim} S_{4}
$$

given by considering the action of G on pairs of opposite vertices of the cube. In class we computed the normalizer of $H=\langle(123)\rangle$ in S_{4}. Give a geometric description of the normalizer in terms of the isomorphism φ.
(3) Let G be the group of isometries of the Euclidean plane \mathbb{R}^{2} with group law given by composition of functions. (Recall that an isometry of \mathbb{R}^{2} is a function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which preserves distances.) Let H be the subgroup of G consisting of all rotations about the origin.
(a) Determine the normalizer of H in G.
(b) Give an explicit description of the homomorphism

$$
N(H) \rightarrow \operatorname{Aut}(H), \quad g \mapsto\left(h \mapsto g h g^{-1}\right) .
$$

(4) Let G be a group with $|G|=p^{n}$ for some prime p and $n \in \mathbb{N}$. In class we used the class equation to prove that the center of G is non-trivial, $Z(G) \neq\{e\}$. As a corollary we showed that any group of order p^{2} is abelian. In this question we will study a non-abelian group of order p^{3} : Let G be the subgroup of $\mathrm{GL}_{3}(\mathbb{Z} / p \mathbb{Z})$ consisting of upper triangular matrices with all diagonal entries equal to 1 .
(a) Determine the center $Z(G)$ of G.
(b) Construct an isomorphism from $G / Z(G)$ to a standard group.
(5) Let $n \in \mathbb{N}$.
(a) Show that the map

$$
\theta: \mathrm{GL}_{n}(\mathbb{R}) \rightarrow \mathrm{GL}_{n}(\mathbb{R}), \quad \theta(A)=\left(A^{-1}\right)^{T}
$$

is an automorphism of $\mathrm{GL}_{n}(\mathbb{R})$. (We use the notation B^{T} for the transpose of a square matrix B.)
(b) Prove that the automorphism θ is not given by conjugation by some element $B \in \mathrm{GL}_{n}(\mathbb{R})$. That is, there does not exist $B \in$ $G L_{n}(\mathbb{R})$ such that $B A B^{-1}=\left(A^{-1}\right)^{T}$ for all $A \in \mathrm{GL}_{n}(\mathbb{R})$.
(6) Let p be a prime and consider the cyclic subgroup $H=\langle(123 \cdots p)\rangle$ of the symmetric group S_{p}.
(a) Determine the number of conjugate subgroups of H. Deduce the order of the normalizer $N(H)$ of H in S_{p}.
(b) Show that the homomorphism

$$
\varphi: N(H) \rightarrow \operatorname{Aut}(H), \quad g \mapsto g h g^{-1}
$$

is surjective with kernel H.
(c) Show that $N(H)$ can be generated by two elements, and describe a set of two generators explicitly for $p=5$.
(7) Let G be a group and $Z(G)$ the center of G. Prove that if $G / Z(G)$ is cyclic then G is abelian (so that $G=Z(G)$).
(8) Let G be a finite group and H a proper subgroup of G.
(a) Show that the union of the conjugate subgroups of H is not equal to G.
(b) Deduce that there is a conjugacy class which is disjoint from H.
(9) Let G be a finite group. Let p be the smallest prime dividing $|G|$. Suppose H is a normal subgroup of G of order p. Show that H is contained in the center of G.
(10) Let G be a group such that $|G|=p^{n}$ for some prime p and $n \in \mathbb{N}$. Suppose H is a proper subgroup of G. Prove that H is a proper subgroup of its normalizer $N(H)$ in G.
(11) (Optional) Let F be a field and $n \in \mathbb{N}$. In class we introduced the subgroup B of $G L_{n}(F)$ consisting of upper triangular matrices, i.e., matrices b such that $b_{i j}=0$ for $i>j$. We observed that B can be realized as a stabilizer subgroup as follows. Let X denote the set of flags, that is, n-tuples $\left(V_{1}, \ldots, V_{n}\right)$ where $V_{i} \subset F^{n}$ is a subspace of dimension i for each i, and

$$
V_{1} \subset V_{2} \subset \cdots \subset V_{n}=F^{n}
$$

Then $G=G L_{n}(F)$ acts on X via $g \cdot\left(V_{1}, \ldots, V_{n}\right)=\left(g\left(V_{1}\right), \ldots, g\left(V_{n}\right)\right)$. (Note: Since g is invertible, if V is a subspace of F^{n} then V and $g(V)$ have the same dimension.) And B is the stabilizer in G of the standard flag

$$
\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset \cdots \subset\left\langle e_{1}, \ldots, e_{n}\right\rangle=F^{n}
$$

(a) Show that G acts transitively on the set X of flags. Deduce that we have a bijection

$$
G / B \rightarrow X, \quad g B \mapsto g \cdot x_{\mathrm{std}} .
$$

where G / B denotes the set of left cosets of B in G (note B is not normal in G so this is not a group) and $x_{\text {std }} \in X$ denotes the standard flag.
(b) Using part (a) or otherwise, determine a formula for the number $|X|$ of flags in case F is a finite field of order q.
(12) (Optional) Let G be a group. The action of G on itself by left multiplication gives an injective homomorphism

$$
\varphi: G \rightarrow S_{G}, \quad g \mapsto(x \mapsto g x) .
$$

Here S_{G} denotes the symmetric group of permutations of the set G (i.e. the set of bijections from G to itself with the group operation given by composition of functions). In particular, if $|G|=n$ then choosing an ordering of the elements of G gives an isomorphism $S_{G} \simeq S_{n}$. (This
proves Cayley's theorem: every group of order n is isomorphic to a subgroup of S_{n}.)

In class we considered the following construction: if H is a subgroup of a group G, define the normalizer $N(H)$ of H in G by

$$
N(H)=\left\{g \in G \mid g H g^{-1}=H\right\}
$$

Then $N(H)$ is a subgroup of G and H is a normal subgroup of $N(H)$. In particular, the group $N(H)$ acts on H by conjugation. This action determines a group homomorphism

$$
N(H) \rightarrow \operatorname{Aut}(H), \quad g \mapsto\left(h \mapsto g h g^{-1}\right) .
$$

In this question we will combine these two constructions to show that any automorphism of a group G is realized by an instance of the second construction: Let G be group and $\varphi: G \rightarrow S_{G}$ the injective homomorphism defined above. Let $H=\varphi(G) \leq S_{G}$ denote the image of φ. Then φ defines an isomorphism from G to H. Consider the normalizer $N(H)$ of H in S_{G}. Show that if $\theta: G \rightarrow G$ is an automorphism of G then $\theta \in N(H)$, and the automorphism

$$
\psi: H \rightarrow H, \quad h \mapsto \theta \circ h \circ \theta^{-1}
$$

corresponds to the automorphism $\theta: G \rightarrow G$ under the isomorphism $\varphi: G \rightarrow H$. That is, we have $\psi=\varphi \circ \theta \circ \varphi^{-1}$.

Hints:

(1) This can be done quickly using the class equation.
(2) This is similar to the case of $H=\langle(1234)\rangle \leq S_{4}$ we discussed in class (Although it is a little harder to visualize. For instance, what is the intersection of the cube with vertices $(\pm 1, \pm 1, \pm 1)$ with the plane $x+y+z=1 ?$).
(5) (b) Recall that trace $\left(B A B^{-1}\right)=\operatorname{trace}(A)$.
(8) Find an upper bound for the number of elements in the union of conjugate subgroups.
(9) Consider the homomorphism $G \rightarrow \operatorname{Aut}(H), g \mapsto\left(h \mapsto g h g^{-1}\right)$.
(10) Use $Z(G) \neq\{e\}$ and induction on n.

