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Paul Hacking

September 28, 2015

(1) Enumerate all the normal subgroups of the symmetric group S4.

(2) Let G be the group of rotational symmetries of the cube. Recall that
there is an isomorphism

ϕ : G
∼−→ S4

given by considering the action of G on pairs of opposite vertices of the
cube. In class we computed the normalizer of H = 〈(123)〉 in S4. Give
a geometric description of the normalizer in terms of the isomorphism
ϕ.

(3) Let G be the group of isometries of the Euclidean plane R2 with group
law given by composition of functions. (Recall that an isometry of R2

is a function T : R2 → R2 which preserves distances.) Let H be the
subgroup of G consisting of all rotations about the origin.

(a) Determine the normalizer of H in G.

(b) Give an explicit description of the homomorphism

N(H)→ Aut(H), g 7→ (h 7→ ghg−1).

(4) Let G be a group with |G| = pn for some prime p and n ∈ N. In class
we used the class equation to prove that the center of G is non-trivial,
Z(G) 6= {e}. As a corollary we showed that any group of order p2 is
abelian. In this question we will study a non-abelian group of order p3:
Let G be the subgroup of GL3(Z/pZ) consisting of upper triangular
matrices with all diagonal entries equal to 1.

(a) Determine the center Z(G) of G.

1



(b) Construct an isomorphism from G/Z(G) to a standard group.

(5) Let n ∈ N.

(a) Show that the map

θ : GLn(R)→ GLn(R), θ(A) = (A−1)T

is an automorphism of GLn(R). (We use the notation BT for the
transpose of a square matrix B.)

(b) Prove that the automorphism θ is not given by conjugation by
some element B ∈ GLn(R). That is, there does not exist B ∈
GLn(R) such that BAB−1 = (A−1)T for all A ∈ GLn(R).

(6) Let p be a prime and consider the cyclic subgroup H = 〈(123 · · · p)〉 of
the symmetric group Sp.

(a) Determine the number of conjugate subgroups of H. Deduce the
order of the normalizer N(H) of H in Sp.

(b) Show that the homomorphism

ϕ : N(H)→ Aut(H), g 7→ ghg−1

is surjective with kernel H.

(c) Show that N(H) can be generated by two elements, and describe
a set of two generators explicitly for p = 5.

(7) Let G be a group and Z(G) the center of G. Prove that if G/Z(G) is
cyclic then G is abelian (so that G = Z(G)).

(8) Let G be a finite group and H a proper subgroup of G.

(a) Show that the union of the conjugate subgroups of H is not equal
to G.

(b) Deduce that there is a conjugacy class which is disjoint from H.

(9) Let G be a finite group. Let p be the smallest prime dividing |G|.
Suppose H is a normal subgroup of G of order p. Show that H is
contained in the center of G.
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(10) Let G be a group such that |G| = pn for some prime p and n ∈ N. Sup-
pose H is a proper subgroup of G. Prove that H is a proper subgroup
of its normalizer N(H) in G.

(11) (Optional) Let F be a field and n ∈ N. In class we introduced the
subgroup B of GLn(F ) consisting of upper triangular matrices, i.e.,
matrices b such that bij = 0 for i > j. We observed that B can be
realized as a stabilizer subgroup as follows. Let X denote the set of
flags, that is, n-tuples (V1, . . . , Vn) where Vi ⊂ F n is a subspace of
dimension i for each i, and

V1 ⊂ V2 ⊂ · · · ⊂ Vn = F n.

Then G = GLn(F ) acts on X via g · (V1, . . . , Vn) = (g(V1), . . . , g(Vn)).
(Note: Since g is invertible, if V is a subspace of F n then V and g(V )
have the same dimension.) And B is the stabilizer in G of the standard
flag

〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , en〉 = F n.

(a) Show that G acts transitively on the set X of flags. Deduce that
we have a bijection

G/B → X, gB 7→ g · xstd.

where G/B denotes the set of left cosets of B in G (note B is
not normal in G so this is not a group) and xstd ∈ X denotes the
standard flag.

(b) Using part (a) or otherwise, determine a formula for the number
|X| of flags in case F is a finite field of order q.

(12) (Optional) Let G be a group. The action of G on itself by left multi-
plication gives an injective homomorphism

ϕ : G→ SG, g 7→ (x 7→ gx).

Here SG denotes the symmetric group of permutations of the set G (i.e.
the set of bijections from G to itself with the group operation given by
composition of functions). In particular, if |G| = n then choosing an
ordering of the elements of G gives an isomorphism SG ' Sn. (This
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proves Cayley’s theorem: every group of order n is isomorphic to a
subgroup of Sn.)

In class we considered the following construction: if H is a subgroup
of a group G, define the normalizer N(H) of H in G by

N(H) = {g ∈ G | gHg−1 = H}.

Then N(H) is a subgroup of G and H is a normal subgroup of N(H).
In particular, the group N(H) acts on H by conjugation. This action
determines a group homomorphism

N(H)→ Aut(H), g 7→ (h 7→ ghg−1).

In this question we will combine these two constructions to show that
any automorphism of a group G is realized by an instance of the second
construction: Let G be group and ϕ : G→ SG the injective homomor-
phism defined above. Let H = ϕ(G) ≤ SG denote the image of ϕ.
Then ϕ defines an isomorphism from G to H. Consider the normalizer
N(H) of H in SG. Show that if θ : G → G is an automorphism of G
then θ ∈ N(H), and the automorphism

ψ : H → H, h 7→ θ ◦ h ◦ θ−1

corresponds to the automorphism θ : G → G under the isomorphism
ϕ : G→ H. That is, we have ψ = ϕ ◦ θ ◦ ϕ−1.
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Hints:

(1) This can be done quickly using the class equation.

(2) This is similar to the case of H = 〈(1234)〉 ≤ S4 we discussed in
class (Although it is a little harder to visualize. For instance, what is
the intersection of the cube with vertices (±1,±1,±1) with the plane
x+ y + z = 1?).

(5) (b) Recall that trace(BAB−1) = trace(A).

(8) Find an upper bound for the number of elements in the union of con-
jugate subgroups.

(9) Consider the homomorphism G→ Aut(H), g 7→ (h 7→ ghg−1).

(10) Use Z(G) 6= {e} and induction on n.

5


